Advertisements
Advertisements
प्रश्न
Geeta borrowed Rs. 15,000 for 18 months at a certain rate of interest compounded semi-annually. If at the end of six months it amounted to Rs. 15,600; calculate :
(i) the rate of interest per annum.
(ii) the total amount of money that Geeta must pay at the end of 18 months in order to clear the account.
उत्तर
For 1st half - year :
P= Rs. 15,000; A= Rs. 15,600 and T = ½ year
Interest = Rs. 15,600 - Rs. 15,000= Rs. 600
Rate= `["I" xx 100 ]/["P" xx "T"] %
= [600 xx 100]/[15,000 xx 1/2]` % = 8% .
For 2nd half - year :
P = Rs. 15,600; R = 8% and T = `1/2` year
Interest = Rs. `[15,600 xx 8 xx 1/2 ]/[100]` = Rs. 624
Amount = Rs. 15,600 + Rs. 624 = Rs. 16,224
For 3rd half - year :
P = Rs. 16,224; R = 8 % and T = `1/2` year
Interest = Rs. `[16,224 xx 8 xx 1/2 ]/[100]` = Rs. 648.96
Amount = Rs. 16,224 + Rs. 648.96 = Rs. 16,872.96.
APPEARS IN
संबंधित प्रश्न
Calculate the amount and compound interest on Rs 18000 for `2 1/2` years at 10% per annum compounded annually.
What will Rs 125000 amount to at the rate of 6%, if the interest is calculated after every 3 months?
Find the compound interest at the rate of 5% for three years on that principal which in three years at the rate of 5% per annum gives Rs 12000 as simple interest.
Find the compound interest at the rate of 5% per annum for 3 years on that principal which in 3 years at the rate of 5% per annum gives Rs 1200 as simple interest.
Rachana borrowed a certain sum at the rate of 15% per annum. If she paid at the end of two years Rs 1290 as interest compounded annually, find the sum she borrowed.
The interest on a sum of Rs 2000 is being compounded annually at the rate of 4% per annum. Find the period for which the compound interest is Rs 163.20.
Kamala borrowed from Ratan a certain sum at a certain rate for two years simple interest. She lent this sum at the same rate to Hari for two years compound interest. At the end of two years she received Rs 210 as compound interest, but paid Rs 200 only as simple interest. Find the sum and the rate of interest.
At what rate percent per annum will a sum of Rs 4000 yield compound interest of Rs 410 in 2 years?
In how many years ₹ 700 will amount to ₹ 847 at a compound interest rate of 10 p.c.p.a.
A sum is invested at compound interest, compounded yearly. If the interest for two successive years is Rs. 5,700 and Rs. 7,410. calculate the rate of interest.
A certain sum amounts to Rs. 5,292 in two years and Rs. 5,556.60 in three years, interest being compounded annually. Find: the original sum.
Mohit invests Rs. 8,000 for 3 years at a certain rate of interest, compounded annually. At the end of one year it amounts to Rs. 9,440. Calculate :
(i) the rate of interest per annum.
(ii) the amount at the end of the second year.
(iii) the interest accrued in the third year.
Ramesh invests Rs. 12,800 for three years at the rate of 10% per annum compound interest. Find:
(i) the sum due to Ramesh at the end of the first year.
(ii) the interest he earns for the second year.
(iii) the total amount due to him at the end of the third year.
The cost of a machine depreciated by Rs. 4,000 during the first year and by Rs. 3,600 during the second year. Calculate :
- The rate of depreciation.
- The original cost of the machine.
- Its cost at the end of the third year.
On a certain sum of money, invested at the rate of 10 percent per annum compounded annually, the interest for the first year plus the interest for the third year is Rs. 2,652. Find the sum.
A sum of Rs. 13,500 is invested at 16% per annum compound interest for 5years. Calculate :
(i) the interest for the first year.
(ii) the amount at the end of first year.
(iii) the interest for the second year, correct to the nearest rupee.
Calculate the amount and the compound interest on Rs. 12,000 in 2 years and at 10% per year.
Mohan borrowed Rs. 16,000 for 3 years at 5% per annum compound interest. Calculate the amount that Mohan will pay at the end of 3 years.
Calculate the difference between the compound interest and the simple interest on ₹ 8,000 in three years and at 10% per annum.
Peter borrows ₹ 12,000 for 2 years at 10% p.a. compound interest. He repays ₹ 8,000 at the end of the first year. Find:
- the amount at the end of the first year, before making the repayment.
- the amount at the end of the first year, after making the repayment.
- the principal for the second year.
- the amount to be paid at the end of the second year, to clear the account.
The compound interest on ₹ 8000 at 10% p.a for 1 year, compounded half yearly is ____________
If the present population of a city is P and it increases at the rate of r% p.a, then the population n years ago would be `"P"(1 + "r"/100)^"n"`
The compound interest on ₹ 16000 for 9 months at 20% p.a, compounded quarterly is ₹ 2522
The compound interest on Rs 50,000 at 4% per annum for 2 years compounded annually is ______.
Compound interest is the interest calculated on the previous year’s amount.