हिंदी

Given four quantities a, b, c and d are in proportion. Show that: (a – c)b2 : (b – d)cd = (a2 – b2 – ab) : (c2 – d2 – cd) - Mathematics

Advertisements
Advertisements

प्रश्न

Given four quantities a, b, c and d are in proportion. Show that: (a – c)b2 : (b – d)cd = (a2 – b2 – ab) : (c2 – d2 – cd)

योग

उत्तर

Let `a/b = c/d = k`

`=>` a = bk and c = dk

L.H.S = `((a - c)b^2)/((b -d)cd)`

= `((bk - dk)b^2)/((b - d)d^2k)`

= `b^2/d^2`

R.H.S = `(a^2 - b^2 - ab)/(c^2 - d^2 - cd)`

= `(b^2k^2 - b^2 - bkb)/(d^2k^2 - d^2 -  dkd)`

= `(b^2(k^2 - 1 - k))/(d^2(k^2 - 1 - k))`

= `b^2/d^2`

`=>` L.H.S = R.H.S

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Ratio and Proportion (Including Properties and Uses) - Exercise 7 (B) [पृष्ठ ९४]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 7 Ratio and Proportion (Including Properties and Uses)
Exercise 7 (B) | Q 13 | पृष्ठ ९४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×