Advertisements
Advertisements
प्रश्न
Given four quantities p, q, r and s are in proportion, show that
q2(p - r) : rs (q - s) =(p2- q2- pq): ( r2-s2-rs).
उत्तर
p, q, r and s are 1n proportion
then, p : q :: r : s
Let `"p"/"q" = "r"/"s" = "k"`
Then p = kq and r =ks
Now, we have to prove that
`(("p" - "r")"q"^2)/(("q - s")"rs") = ("p"^2 - "q"^2 - "pq")/("r"^2 - "s"^2 - "rs")`
LHS
`= (("p" - "r")"q"^2)/(("q - s")"rs")`
`= (("kq" - "ks")"q"^2)/(("q - s")"ks" xx "s")`
`= ("k"("q - s")"q"^2)/("ks"^2 ("q - s"))`
`= "q"^2/"s"^2`
RHS
`= ("p"^2 - "q"^2 - "pq")/("r"^2 - "s"^2 - "rs")`
`= ("k"^2"q"^2 - "q"^2 - "kq" xx "q")/("k"^2"s"^2 - "s"^2 - "ks" xx "s")`
`= ("q"^2("k"^2 - 1 - "k"))/("s"^2("k"^2 - 1 - "k"))`
`= "q"^2/"s"^2`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Find the mean proportional between a – b and a3 – a2b
Using properties of proportion, solve for x:
`(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = 5`
If a, b and c are in continued proportion, prove that: a: c = (a2 + b2) : (b2 + c2)
If y is the mean proportional between x and z, show that :
xyz (x+y+z)3 =(xy+yz+xz)3
If a : b = c : d, show that (a - c) b2 : (b - d) cd = (a2 - b2 - ab) : (c2 - d2 - cd).
Find the mean proportion of: `(1)/(12) and (1)/(75)`
If b is the mean proportional between a and c, prove that (ab + bc) is the mean proportional between (a² + b²) and (b² + c²).
If `x/a = y/b = z/c`, prove that `"ax - by"/((a + b)(x- y)) + "by - cz"/((b + c)(y - z)) + "cz - ax"/((c + a)(z - x)` = 3
A gets double of what B gets and B gets double of what C gets. Find A : B and B : C and verify whether the result is in proportion or not
Write True (T) or False (F) against the following statement:
16 : 24 : : 20 : 30