English

Given Four Quantities P, Q, R and S Are in Proportion, Show that Q2(P-r):Rs(Q-s)=(P2-q2-pq): ( R2-s2-rs). - Mathematics

Advertisements
Advertisements

Question

Given four quantities p, q, r and s are in proportion, show that 
q2(p - r) : rs (q - s) =(p2- q2- pq): ( r2-s2-rs). 

Sum

Solution

p, q, r and s are 1n proportion 

then, p : q :: r : s 

Let `"p"/"q" = "r"/"s" = "k"`

Then p = kq and r =ks 

Now, we have to prove that

`(("p" - "r")"q"^2)/(("q - s")"rs") = ("p"^2 - "q"^2 - "pq")/("r"^2 - "s"^2 - "rs")`

LHS

`= (("p" - "r")"q"^2)/(("q - s")"rs")`

`= (("kq" - "ks")"q"^2)/(("q - s")"ks" xx "s")`

`= ("k"("q - s")"q"^2)/("ks"^2 ("q - s"))`

`= "q"^2/"s"^2`

RHS

`= ("p"^2 - "q"^2 - "pq")/("r"^2 - "s"^2 - "rs")`

`= ("k"^2"q"^2 - "q"^2 - "kq" xx "q")/("k"^2"s"^2 - "s"^2 - "ks" xx "s")`

`= ("q"^2("k"^2 - 1 - "k"))/("s"^2("k"^2 - 1 - "k"))`

`= "q"^2/"s"^2`

LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Ratio and Proportion - Exercise 9.2

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 9 Ratio and Proportion
Exercise 9.2 | Q 10
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×