Advertisements
Advertisements
प्रश्न
Given L = {1, 2, 3, 4}, M = {3, 4, 5, 6} and N = {1, 3, 5}. Verify that L – (M ∪ N) = (L – M) ∩ (L – N)
उत्तर
The union of two sets is a set containing all elements that are in both sets.
For example: {1, 2, 3} ∪ {2, 4} = {1, 2, 3, 4}
The difference (subtraction) is defined as: The set A – B consists of elements that are in A but not in B.
For example: if A = {1, 2, 3} and B = {3, 5}, then A−B = {1, 2}
The intersection of two sets A and B, consists of all elements that are both in A and B.
For example: {1, 2} ∩ {2, 3} = {2}
Therefore,
M = {3, 4, 5, 6}, N = {1, 3, 5}
⇒ M ∪ N = {1, 3, 4, 5, 6}
L = {1, 2, 3, 4} and M ∪ N = {1, 3, 4, 5, 6}
⇒ L – (M ∪ N) = {2} ......(1)
L = {1, 2, 3, 4} and M = {3, 4, 5, 6}
⇒ L – M = {1, 2}
L = {1, 2, 3, 4} and N = {1, 3, 5}
⇒ L – N = {2, 4}
L – M = {1, 2} and L – N = {2, 4}
⇒ (L – M) ∩ (L – N) = {2} .......(2)
Clearly, from (1) and (2)
L – (M ∪ N) = (L – M) ∩ (L – N)
Hence verified
APPEARS IN
संबंधित प्रश्न
Find the union of the following pairs of sets:
X = {1, 3, 5} Y = {1, 2, 3}
Find the union of the following pairs of sets:
A = {x : x is a natural number and multiple of 3}
B = {x : x is a natural number less than 6}
Find the union of the following pairs of sets:
A = {x : x is a natural number and 1 < x ≤ 6}
B = {x : x is a natural number and 6 < x < 10}
Find the union of the following pairs of sets:
A = {1, 2, 3}, B = Φ
Let A = {a, b}, B = {a, b, c}. Is A ⊂ B? What is A ∪ B?
If A and B are two sets such that A ⊂ B, then what is A ∪ B?
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ B
Is it true that for any sets A and B, P (A) ∪ P (B) = P (A ∪ B)? Justify your answer.
Show that for any sets A and B, A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B)
We have to find the smallest set A such that\[A \cup \left\{ 1, 2 \right\} = \left\{ 1, 2, 3, 5, 9 \right\}\]
Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:
\[A - \left( B \cap C \right) = \left( A - B \right) \cup \left( A - C \right)\]
Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:
\[A \cap \left( B ∆ C \right) = \left( A \cap B \right) ∆ \left( A \cap C \right)\]
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find
A ∪ C
Observe the given Venn diagram and write the following sets.
- A
- B
- A ∪ B
- U
- A'
- B'
- (A ∪ B)'
Observe the Venn diagram and write the given sets U, A, B, A ∪ B, A ∩ B.
Determine whether the following statement is true or false. Justify your answer.
For all sets A, B, and C, if A ⊂ B, then A ∪ C ⊂ B ∪ C
Determine whether the following statement is true or false. Justify your answer.
For all sets A, B, and C, if A ⊂ C and B ⊂ C, then A ∪ B ⊂ C
For all sets A and B, A ∪ (B – A) = A ∪ B
For all sets A and B, A – (A ∩ B) = A – B
For all sets A and B, (A ∪ B) – B = A – B
If X and Y are two sets and X′ denotes the complement of X, then X ∩ (X ∪ Y)′ is equal to ______.
If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8}. Then (B ∪ C)′ is ______.
If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8}. Then (C – A)′ is ______.