हिंदी

For all sets A and B, A ∪ (B – A) = A ∪ B - Mathematics

Advertisements
Advertisements

प्रश्न

For all sets A and B, A ∪ (B – A) = A ∪ B

योग

उत्तर

There are two sets A and B

To prove: A ∪ (B – A) = A ∪ B

Take L.H.S

A ∪ (B – A)

= A ∪ (B ∩ A’)  .....[∵ A – B = A ∩ B’]

= (A ∪ B) ∩ (A ∪ A’)

∵ Distributive property of set:

(A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C)}

= (A ∪ B) ∩ U   .....[∵ A ∪ A’ = U]

= A ∪ B

= R.H.S

Hence Proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Sets - Exercise [पृष्ठ १४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 1 Sets
Exercise | Q 18 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the union of the following pairs of sets:

X = {1, 3, 5} Y = {1, 2, 3}


Find the union of the following pairs of sets:

A = {a, e, i, o, u}, B = {a, b, c} 


Find the union of the following pairs of sets:

A = {x : x is a natural number and multiple of 3}

B = {x : x is a natural number less than 6}


Find the union of the following pairs of sets:

A = {x : x is a natural number and 1 < x ≤ 6}

B = {x : x is a natural number and 6 < x < 10}


Find the union of the following pairs of sets:

A = {1, 2, 3}, B = Φ


Show that for any sets A and B, A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B)


We have to find the smallest set A such that\[A \cup \left\{ 1, 2 \right\} = \left\{ 1, 2, 3, 5, 9 \right\}\] 


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:

\[A \cap \left( B \cup C \right) = \left( A \cap B \right) \cup \left( A \cap C \right)\]


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie: 

\[A - \left( B \cap C \right) = \left( A - B \right) \cup \left( A - C \right)\] 


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:

\[A \cap \left( B ∆ C \right) = \left( A \cap B \right) ∆ \left( A \cap C \right)\]


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ C


Determine whether the following statement is true or false. Justify your answer.

For all sets A and B, (A – B) ∪ (A ∩ B) = A


Determine whether the following statement is true or false. Justify your answer.

For all sets A, B, and C, if A ⊂ B, then A ∩ C ⊂ B ∩ C


Determine whether the following statement is true or false. Justify your answer.

For all sets A, B, and C, if A ⊂ B, then A ∪ C ⊂ B ∪ C


For all sets A and B, A – (A – B) = A ∩ B


For all sets A and B, A – (A ∩ B) = A – B


For all sets A and B, (A ∪ B) – B = A – B


If A and B are two sets, then A ∩ (A ∪ B) equals ______.


If X and Y are two sets and X′ denotes the complement of X, then X ∩ (X ∪ Y)′ is equal to ______.


If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8}. Then (B ∪ C)′ is ______.


If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8}. Then (C – A)′ is ______.


Let S1 = `{x ∈ R - {1, 2}: ((x + 2)(x^2 + 3x + 5))/(-2 + 3x - x^2) ≥ 0}` and S2 = {x ∈ R : 32x – 3x+1 – 3x+2 + 27 ≤ 0}. Then, S1 ∪ S2 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×