Advertisements
Advertisements
प्रश्न
Let S1 = `{x ∈ R - {1, 2}: ((x + 2)(x^2 + 3x + 5))/(-2 + 3x - x^2) ≥ 0}` and S2 = {x ∈ R : 32x – 3x+1 – 3x+2 + 27 ≤ 0}. Then, S1 ∪ S2 is equal to ______.
विकल्प
(–∞, –2] ∪ (1, 2)
(–∞, –2] ∪ [1, 2]
(–2, 1] ∪ (2, ∞)
(–∞, 2]
MCQ
रिक्त स्थान भरें
उत्तर
Let S1 = `{x ∈ R - {1, 2}: ((x + 2)(x^2 + 3x + 5))/(-2 + 3x - x^2) ≥ 0}` and S2 = {x ∈ R : 32x – 3x+1 – 3x+2 + 27 ≤ 0}. Then, S1 ∪ S2 is equal to (–∞, –2] ∪ [1, 2].
Explanation:
For, S1 we have
⇒ `((x + 2)(x^2 + 3x + 5))/(x^2 - 3x + 2) ≤ 0`
⇒ x ∈ (–∞, 2] ∪ (1, 2)
For, S2 we have
= 3x(3x – 3) – 32(3x – 3) ≤ 0
For, S2, x ∈ [1, 2]
⇒ (–∞, –2] ∪ [1, 2]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?