मराठी

Let S1 = {x∈R-{1,2}:(x+2)(x2+3x+5)-2+3x-x2≥0} and S2 = {x ∈ R : 32x – 3x+1 – 3x+2 + 27 ≤ 0}. Then, S1 ∪ S2 is equal to ______. -

Advertisements
Advertisements

प्रश्न

Let S1 = `{x ∈ R - {1, 2}: ((x + 2)(x^2 + 3x + 5))/(-2 + 3x - x^2) ≥ 0}` and S2 = {x ∈ R : 32x – 3x+1 – 3x+2 + 27 ≤ 0}. Then, S1 ∪ S2 is equal to ______.

पर्याय

  • (–∞, –2] ∪ (1, 2)

  • (–∞, –2] ∪ [1, 2]

  • (–2, 1] ∪ (2, ∞)

  • (–∞, 2]

MCQ
रिकाम्या जागा भरा

उत्तर

Let S1 = `{x ∈ R - {1, 2}: ((x + 2)(x^2 + 3x + 5))/(-2 + 3x - x^2) ≥ 0}` and S2 = {x ∈ R : 32x – 3x+1 – 3x+2 + 27 ≤ 0}. Then, S1 ∪ S2 is equal to (–∞, –2] ∪ [1, 2].

Explanation:

For, S1 we have

⇒ `((x + 2)(x^2 + 3x + 5))/(x^2 -  3x + 2) ≤ 0`

⇒ x ∈ (–∞, 2] ∪ (1, 2)

For, S2 we have

= 3x(3x – 3) – 32(3x – 3) ≤ 0

For, S2, x ∈ [1, 2]

⇒ (–∞, –2] ∪ [1, 2]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×