Advertisements
Advertisements
प्रश्न
Given that y = (sin x)x . xsinx + ax, find `dy/dx`.
योग
उत्तर
y = (sin x)x . xsinx + ax
Let u = (sin x)x; v = xsinx
y = u . v + ax ...(i)
`dy/dx = u(dv)/dx + v (du)/dx + a^xloga`
u = (sin x)x
Taking log on both sides
log u = x log sin x
Differentiate log u = `1/u (du)/dx = x/sinx xx cosx + log sinx`
`= (du)/dx = (sin)^x[x cot x + logsinx]`
v = xsinx ...(ii)
log v = sin x log x
`1/v (dv)/dx = sinx/x + logx cosx`
`(dv)/dx = x^sinx [sinx/x + log cos x]` ...(iii)
Put eq (ii) and (iii) in eq (i)
`dy/dx = (sinx)^x .x^sinx [sinx/x+log cos x] + x^sinx.(sinx)^x[x cotx+log sinx] + a^x loga`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?