मराठी

Given that y = (sin x)x.xsinx + ax, find dydx. - Mathematics

Advertisements
Advertisements

प्रश्न

Given that y = (sin x)x . xsinx + ax, find `dy/dx`.

बेरीज

उत्तर

y = (sin x)x .  xsinx + ax

Let u = (sin x)x; v = xsinx

y = u . v + ax   ...(i)

`dy/dx = u(dv)/dx + v (du)/dx + a^xloga`

u = (sin x)x

Taking log on both sides

log u = x log sin x

Differentiate log u = `1/u (du)/dx = x/sinx xx cosx + log sinx`

`= (du)/dx = (sin)^x[x cot x + logsinx]`

v = xsinx   ...(ii)

log v = sin x log x

`1/v (dv)/dx = sinx/x + logx cosx`

`(dv)/dx = x^sinx [sinx/x + log cos x]`   ...(iii)

Put eq (ii) and (iii) in eq (i)

`dy/dx = (sinx)^x .x^sinx [sinx/x+log cos x] + x^sinx.(sinx)^x[x cotx+log sinx] + a^x loga`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Outside Delhi Set - 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×