Advertisements
Advertisements
प्रश्न
If `(1)/x - (2)/(3"b") + 1` = 0, find the value of b when `(2x + 4)/(8) - (3 - 2x)/(12) = (x - 3)/(6)`
योग
उत्तर
`(1)/x - (2)/(3"b") + 1` = 0
Taking LCM,
⇒ `(3"b" - 2x + 3"b"x)/(3"b"x)` = 0
⇒ 3b = x(-3b + 2)
⇒ x = `(3"b")/(2 - 3"b")` -----(1)
Solving `(2x + 4)/(8) - (3 - 2x)/(12) = (x - 3)/(6)` for x:
⇒ `(x + 2)/(4) - (3 - 2x)/(12) - ((x - 3)/6)` = 0
Taking LCM,
`(3(x + 2) - (3 - 2x) - 2(x - 3))/(12)` = 0
⇒ 3x + 6 - 3 + 2x - 2x + 6 = 0
⇒ 3x = -9
⇒ x = -3 -----(2)
From (1) and (2),
⇒ `(3"b")/(2 - 3"b")` = -3
Cross multiplying,
⇒ 3b = -6 + 9b
⇒ -6b = -6
⇒ b = 1.
shaalaa.com
Linear Equation in Two Variables
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?