हिंदी

If → a = 5 ^ I − ^ J − 3 ^ K and → B = ^ I + 3 ^ J − 5 H a T K , Then Show that the Vectors → a + → B and → a − → B Are Orthogonal. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\vec{a} = 5 \hat{i} - \hat{j} - 3 \hat{k} \text{ and } \vec{b} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then show that the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} \] are orthogonal.

योग

उत्तर

\[\text{ Given that }\]
\[ \vec{a} = 5 \hat{i} - \hat{j} - 3 \hat{k} ; \vec{b} = \hat{i} + 3 \hat{j} - 5 \hat{k} \]
\[ \therefore \vec{a} + \vec{b} = 5 \hat{i} - \hat{j} - 3 \hat{k} + \hat{i} + 3 \hat{j} - 5 \hat{k} = 6 \hat{i} + 2 \hat{j} - 8 \hat{k} \]
\[\text{ And } \vec{a} - \vec{b} = 5 \hat{i} - \hat{j} - 3 \hat{k} - \left( \hat{i} + 3 \hat{j} - 5 \hat{k} \right) = 4 \hat{i} - 4 \hat{j} + 2 \hat{k} \]
\[\text{ Now },\]
\[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right)\]
\[ = \left( 6 \hat{i}] + 2 \hat{j} - 8 \hat{k} \right) . \left( 4 \hat{i} - 4 \hat{j} + 2 \hat{k}  \right)\]
\[ = 24 - 8 - 16\]
\[ = 0\]
\[So, \vec{a} + \vec{b} \text{ is orthogonal to } \vec{a} - \vec{b} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 24: Scalar Or Dot Product - Exercise 24.1 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 24 Scalar Or Dot Product
Exercise 24.1 | Q 27 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write two different vectors having same magnitude.


The value of is `hati.(hatj xx hatk)+hatj.(hatixxhatk)+hatk.(hatixxhatj)` is ______.


Find the projection of \[\vec{b} + \vec{c}  \text { on }\vec{a}\]  where \[\vec{a} = 2 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - 2 \hat{k} \text{ and } \vec{c} = 2 \hat{i} - \hat{j} + 4 \hat{k} .\]


A unit vector \[\vec{a}\] makes angles \[\frac{\pi}{4}\text{ and }\frac{\pi}{3}\] with \[\hat{i}\] and \[\hat{j}\]  respectively and an acute angle θ with \[\hat{k}\] .  Find the angle θ and components of \[\vec{a}\] .


If two vectors \[\vec{a} \text{ and } \vec{b}\] are such that \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 1 \text{ and } \vec{a} \cdot \vec{b} = 1,\]  then find the value of \[\left( 3 \vec{a} - 5 \vec{b} \right) \cdot \left( 2 \vec{a} + 7 \vec{b} \right) .\] 


If \[\vec{a}\] is a unit vector, then find \[\left| \vec{x} \right|\]  in each of the following. 

\[\left( \vec{x} - \vec{a} \right) \cdot \left( \vec{x} + \vec{a} \right) = 8\] 


Find \[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right|\] if 

\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 12 \text{ and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]


Find \[\left| \vec{a} \right| and \left| \vec{b} \right|\] if 

\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 3\text{  and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]


Find \[\left| \vec{a} - \vec{b} \right|\] if 

\[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and } \vec{a} \cdot \vec{b} = 8\]


Find \[\left| \vec{a} - \vec{b} \right|\] if  

\[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 4\]


Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\]  

\[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 1\]


Express the vector \[\vec{a} = 5 \text{i} - 2 \text{j} + 5 \text{k}\] as the sum of two vectors such that one is parallel to the vector \[\vec{b} = 3 \text{i} + \text{k}\]  and other is perpendicular to \[\vec{b}\]


If \[\vec{a} \text{ and } \vec{b}\] are two vectors of the same magnitude inclined at an angle of 30°, such that \[\vec{a} \cdot \vec{b} = 3, \text{ find } \left| \vec{a} \right|, \left| \vec{b} \right| .\] 


Express \[2 \hat{i} - \hat{j} + 3 \hat{k}\] as the sum of a vector parallel and a vector perpendicular to \[2 \hat{i} + 4 \hat{j} - 2 \hat{k} .\] 

 


Let \[\vec{a} = 5 \hat{i} - \hat{j} + 7 \hat{k} \text{ and } \vec{b} = \hat{i} - \hat{j} + \lambda \hat{k} .\] Find λ such that \[\vec{a} + \vec{b}\] is orthogonal to \[\vec{a} - \vec{b}\] 


If \[\vec{c}\] s perpendicular to both \[\vec{a} \text{ and } \vec{b}\] then prove that it is perpendicular to both \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b}\] 


If \[\left| \vec{a} \right| = a \text{ and } \left| \vec{b} \right| = b,\] prove that \[\left( \frac{\vec{a}}{a^2} - \frac{\vec{b}}{b^2} \right)^2 = \left( \frac{\vec{a} - \vec{b}}{ab} \right)^2 .\] 


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} ,\] show that the angle θ between the vectors \[\vec{b} \text{ and } \vec{c}\] is given by  \[\frac{\left| \vec{a} \right|^2 - \left| \vec{b} \right|^2 - \left| \vec{c} \right|^2}{2\left| \vec{b} \right| \left| \vec{c} \right|} .\]


Let \[\vec{u,} \vec{v} \text{ and } \vec{w}\]  be vectors such \[\vec{u} + \vec{v} + \vec{w} = \vec{0} .\] If \[\left| \vec{u} \right| = 3, \left| \vec{v} \right| = 4 \text{ and } \left| \vec{w} \right| = 5,\] then find \[\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} .\]


Let \[\vec{a} = x^2 \hat{i} + 2 \hat{j} - 2 \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{c} = x^2 \hat{i} + 5 \hat{j} - 4 \hat{k}\] be three vectors. Find the values of x for which the angle between \[\vec{a} \text{ and } \vec{b}\ \]  is acute and the angle between \[\vec{b} \text{ and } \vec{c}\] is obtuse.


Find the values of x and y if the vectors \[\vec{a} = 3 \hat{i} + x \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + \hat{j} + y \hat{k}\] are mutually perpendicular vectors of equal magnitude. 


If \[\vec{a}\] \[\vec{b}\]  are two vectors such that \[\left| \vec{a} + \vec{b} \right| = \left| \vec{b} \right|\] then prove that \[\vec{a} + 2 \vec{b}\] is perpendicular to \[\vec{a}\] 


If `|vec"a"| = 4, |vec"b"| = 3` and `vec"a".vec"b" = 6 sqrt(3)`, then find the value of `|vec"a" xx vec"b"|`.


Which of the following is magnitude of vectors. `veca = hati + hatj + hatk`


What is the product of  `(3veca * 5vecb) * (2veca + 7vecb)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×