हिंदी

If a = ⎡ ⎢ ⎣ 1 1 1 0 1 3 1 − 2 1 ⎤ ⎥ ⎦ ,Find A-1 Hence, Solve the Following System of Equations X+Y+Z = 6 Y+3z =11 X-2y+Z = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 1, 1),(0, 1, 3),(1, -2, 1)]`,find A-1

hence, solve the following system of equations

x + y + z = 6
y + 3z =11
x- 2y + z = 0

योग

उत्तर

`[(1, 1, 1),(0, 1, 3),(1, -2, 1)]`

Cofactors

A11 = 7, A12 = 3, A13 = -1
A21 = -3, A22 = 0, A23 = 3
A31 = 2, A32 = -3, A33 = 1

A-1 = `(Adj("A")) /|"A"|`

Adj (A) = `[(7, 3, -1),(-3, 0, 3),(2, -3, 1)]^"T" = [(7, -3, 2),(3, 0, -3),(-1, 3, 1)] `

|A| = 9

`"A"^-1 = 1/9 [(7, -3, 2),(3, 0, -3),(-1, 3, 1)] `

For system of equations 

AX = B

X = `"A"^-1 "B"`

`[("x"),("y"),("z")] = 1/9 [(7, -3, 2),(3, 0, -3),(-1, 3, 1)] [(6),(11),(0)]`

`[("x"),("y"),("z")] = 1/9 [(9),(18),(27)]`

x =1, y = 2, z = 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/1

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.


A typist charges Rs. 145 for typing 10 English and 3 Hindi pages, while charges for typing 3 English and 10 Hindi pages are Rs. 180. Using matrices, find the charges of typing one English and one Hindi page separately. However typist charged only Rs. 2 per page from a poor student Shyam for 5 Hindi pages. How much less was charged from this poor boy? Which values are reflected in this problem?


 

If A = `[[1,-2,3],[0,-1,4],[-2,2,1]]` ,find (A')-1

 

Matrices A and B will be inverse of each other only if ______.


Construct a 2 × 3 matrix whose elements aij are given by :

(i) aij = j


Construct a 2 × 3 matrix whose elements aij are given by :

(ii) aij = 2i − j


Construct a 2 × 3 matrix whose elements aij are given by :

(iii) aij = i + j


Construct a 2 × 3 matrix whose elements aij are given by :

(iv) aij =`(i+j)^2/2` 


Without using the concept of inverse of a matrix, find the matrix `[[x       y],[z       u]]` such that
`[[5     -7],[-2         3]][[x        y],[z         u]]=[[-16       -6],[7                   2]]`


Find the matrix A such that `A=[[1,2,3],[4,5,6]]=`  `[[-7,-8,-9],[2,4,6]]`


Find the matrix A such that `[[4],[1],[3]]  A=[[-4,8,4],[-1,2,1],[-3,6,3]]`


Find the inverse of the following matrix using elementary operations.

`"A" = [(1,2,-2), (-1,3,0),(0,-2,1)]`


Using elementary row transformation, find the inverse of the matrix

`[(2,-3,5),(3,2,-4),(1,1,-2)]`


Using elementary transformation, find the inverse of a matrix `[(-1,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the matrix A `= [(1,3),(2,7)],` using elementary row transformation.


If `[("x + y", 2"x + z"),("x - y", 2"z + w")] = [(4,7),(0,10)]` then the values of x, y, z and w respectively are ____________.


If A2 – A + I = O, then the inverse of A is ____________.


Value of k, for which A = `[("k",8),(4,2"k")]` is a singular matrix is:


Given that A is a non-singular matrix of order 3 such that A2 = 2A, then the value of |2A| is:


If A = `["a"_("ij")]` is a 2 x 3 matrix, such that `"a"_("ij") = ("-i" + 2"j")^2/5.` then a23 is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×