हिंदी

Find the inverse of the following matrix using elementary operations. "A" = (1,2,-2), (-1,3,0),(0,-2,1) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse of the following matrix using elementary operations.

`"A" = [(1,2,-2), (-1,3,0),(0,-2,1)]`

योग

उत्तर

We know that
A =I A
or, `[(1,2,-2),(-1,3,0),(0,-2,1)] =[(1,0,0),(0,1,0),(0,0,1)]"A"`

⇒ `[(1,2,-2),(0,5,-2),(0,-2,1)]=[(1,0,0),(1,1,0),(0,0,1)]"A"` ...[Applying R2 → R2 + R1]

⇒ `[(1,2,-2),(0,1,0),(0,-2,1)]=[(1,0,0),(1,1,2),(0,0,1)]"A"` ...[Applying R2 → R2 + 2R3]

⇒`[(1,0,-2),(0,1,0),(0,0,1)]=[(-1,-2,-4),(1,1,2),(2,2,5)]"A"
`...[Applying R1 → R1 + (-2)R2,R3 → R3 +2R2 ]

⇒`[(1,0,0),(0,1,0),(0,0,1)]=[(3,2,6),(1,1,2),(2,2,5)]"A"` ...[Applying R1→ R1+2R3 ]

Hence, `"A"^(-1) = [(3,2,6),(1,1,2),(2,2,5)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/1/3

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.


 

If A = `[[1,-2,3],[0,-1,4],[-2,2,1]]` ,find (A')-1

 

Construct a 2 × 3 matrix whose elements aij are given by :

(i) aij = j


Construct a 2 × 3 matrix whose elements aij are given by :

(ii) aij = 2i − j


Construct a 2 × 3 matrix whose elements aij are given by :

(iii) aij = i + j


Construct a 2 × 3 matrix whose elements aij are given by :

(iv) aij =`(i+j)^2/2` 


Without using the concept of inverse of a matrix, find the matrix `[[x       y],[z       u]]` such that
`[[5     -7],[-2         3]][[x        y],[z         u]]=[[-16       -6],[7                   2]]`


Find the matrix A such that `[[1     1],[0       1]]A=[[3        3         5],[1       0          1]]`


Find the matrix A such that `A=[[1,2,3],[4,5,6]]=`  `[[-7,-8,-9],[2,4,6]]`


Find the matrix A such that `[[4],[1],[3]]  A=[[-4,8,4],[-1,2,1],[-3,6,3]]`


If A = `[(1, 1, 1),(0, 1, 3),(1, -2, 1)]`,find A-1

hence, solve the following system of equations

x + y + z = 6
y + 3z =11
x- 2y + z = 0


Using elementary row transformation, find the inverse of the matrix

`[(2,-3,5),(3,2,-4),(1,1,-2)]`


A square matrix A is called idempotent if ____________.


Using elementary transformation, find the inverse of a matrix `[(-1,1,2),(1,2,3),(3,1,1)]`


Find the inverse of the matrix A `= [(1,3),(2,7)],` using elementary row transformation.


`[("x" + 3, "z" + 4, 2"y" - 7),(4"x" + 6, a - 1, 0),("b" - 3, 3"b", "z"+ 2"c")] = [(0,6,3"y" - 2),(2"x", -3, 2"c" + 2),(2"b" + 4, -21,0)]` then find the values of a, b, c, x, y, and z respectively.


If A2 – A + I = O, then the inverse of A is ____________.


If `[(2 + "x", 3,4),(1,-1,2),("x", 1,-5)]` is singular matrix, ten x is ____________.


Value of k, for which A = `[("k",8),(4,2"k")]` is a singular matrix is:


Given that A is a non-singular matrix of order 3 such that A2 = 2A, then the value of |2A| is:


If A = `["a"_("ij")]` is a 2 x 3 matrix, such that `"a"_("ij") = ("-i" + 2"j")^2/5.` then a23 is ____________.


If A = `[a_ÿ]` is a square matrix of order n, then elements (entries) a11, a22,------ann are said to constitute the ------ of the matrix A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×