हिंदी

If a, b, c are in continued proportion, prove that: 1a3+1b3+1c3=ab2c2+bc2a2+ca2b2 - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are in continued proportion, prove that: `(1)/a^3 + (1)/b^3 + (1)/c^3 = a/(b^2c^2) + b/(c^2a^2) + c/(a^2b^2)`

योग

उत्तर

As a, b, c, are in continued proportion
Let `a/b = b/c` = k
L.H.S. = `(1)/a^3 + (1)/b^3 + (1)/c^3`

= `(1)/(ck^2)^3 + (1)/(ck)^3 + (1)/c^3`

= `(1)/(c^3k^6) + (1)/(c^3k^3) + (1)/c^3`

= `(1)/c^3[1/k^6 + 1/k^3 + 1/1]`

R.H.S. = `a/(b^2c^2) + b/(c^2a^2) + c/(a^2b^2)`

= `ck^2/((ck)^2c^2) + "ck"/(c^2(ck^2)^2) + c/((ck^2)^2(ck)^2)`

= `(ck^2)/(c^4k^2) + "ck"/(c^4k^4) + c/(c^4k^6)`

= `(1)/c^3 + (1)/(c^3k^3) + (1)/(c^3k^6)`

= `(1)/c^3[1 + 1/k^3 + 1/k^6]`

= `(1)/c^3[1/k^6 + 1/k^3 + 1]`
∴ L.H.S. = R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Ratio and Proportion - Exercise 7.2

APPEARS IN

एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
अध्याय 7 Ratio and Proportion
Exercise 7.2 | Q 22.2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×