हिंदी

If a, b, c are in continued proportion, prove that: pa2+qab+rb2pb2+qbc+rc2=ac - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are in continued proportion, prove that: pa2+qab+rb2pb2+qbc+rc2=ac

योग

उत्तर

Given a, b, c are in continued proportion
pa2+qab+rb2pb2+qbc+rc2=ac
Let ab=bc = k
⇒ a = bk and b = ck     ....(i)
⇒ a = (ck)k = ck2        ...[Using (i)]
and b = ck
L.H.S. = ac
= ck2c
= k2
R.H.S. = p(ck2)2+q(ck2)ck+r(ck)2p(ck)2+q(ck)c+rc2

= pc2k4+qc2k3+rc2k2pc2k2+qc2k+rc2

= c2k2c2[pk2+qk+rpk2+qk+r]
= k2                              ...(iii)
From (ii) and (iii), L.H.s. = R.H.S.
∴ b = ck, a = bk = c k k = ck2 
(i) L.H.S.
= a + bb + c

= ck2+ckck + c

= ck(k+1)c(k+1)
= k
R.H.S.
= a2(b-c)b2(a-b)

= (ck2)2(ck-c)(ck)2(ck2-ck)

= c2k4c(k-1)c2k2(k-1).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Ratio and Proportion - Exercise 7.2

APPEARS IN

एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
अध्याय 7 Ratio and Proportion
Exercise 7.2 | Q 21
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.