हिंदी

If a, b, c, d are in proportion, then prove that 11a2+9ac11b2+9bd=a2+3acb2+3bd - Algebra

Advertisements
Advertisements

प्रश्न

If a, b, c, d are in proportion, then prove that

`[11a^2 + 9ac]/[ 11b^2 + 9bd] = [ a^2 + 3ac]/[ b^2 + 3bd]`

योग

उत्तर

It is given that a, b, c, d are in proportion.

`therefore a/b = c/d = k`

⇒ a = bk, c = dk

`∴ [ 11a^2 + 9ac]/[ 11b^2 + 9bd]`

= `[11(bk)^2 + 9 xx bk xx dk]/[ 11b^2 +9bd]`

= `[k^2(11b^2 + 9bd)]/[11b^2 + 9bd]`

= `k^2`    ...(1)

`∴ [a^2 + 3ac]/[ b^2 + 3bd]`

= `[(bk)^2 + 3 xx bk xx dk]/[ b^2 + 3bd]`

= `[k^2( b^2 + 3bd)]/[b^2 + 3bd ]`

= `k^2`    ...(2)

From (1) and (2), we get

`[ 11a^2 + 9ac]/[ 11b^2 + 9bd] = [ a^2 + 3ac]/[ b^2 + 3bd]`

shaalaa.com
k Method for Equal Ratios
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Ratio and Proportion - Problem Set 4 [पृष्ठ ७८]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
अध्याय 4 Ratio and Proportion
Problem Set 4 | Q (9) (i) | पृष्ठ ७८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×