English
Maharashtra State BoardSSC (English Medium) 9th Standard

If a, b, c, d are in proportion, then prove that 11a2+9ac11b2+9bd=a2+3acb2+3bd - Algebra

Advertisements
Advertisements

Question

If a, b, c, d are in proportion, then prove that

`[11a^2 + 9ac]/[ 11b^2 + 9bd] = [ a^2 + 3ac]/[ b^2 + 3bd]`

Sum

Solution

It is given that a, b, c, d are in proportion.

`therefore a/b = c/d = k`

⇒ a = bk, c = dk

`∴ [ 11a^2 + 9ac]/[ 11b^2 + 9bd]`

= `[11(bk)^2 + 9 xx bk xx dk]/[ 11b^2 +9bd]`

= `[k^2(11b^2 + 9bd)]/[11b^2 + 9bd]`

= `k^2`    ...(1)

`∴ [a^2 + 3ac]/[ b^2 + 3bd]`

= `[(bk)^2 + 3 xx bk xx dk]/[ b^2 + 3bd]`

= `[k^2( b^2 + 3bd)]/[b^2 + 3bd ]`

= `k^2`    ...(2)

From (1) and (2), we get

`[ 11a^2 + 9ac]/[ 11b^2 + 9bd] = [ a^2 + 3ac]/[ b^2 + 3bd]`

shaalaa.com
k Method for Equal Ratios
  Is there an error in this question or solution?
Chapter 4: Ratio and Proportion - Problem Set 4 [Page 78]

APPEARS IN

Balbharati Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
Chapter 4 Ratio and Proportion
Problem Set 4 | Q (9) (i) | Page 78
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×