हिंदी

If δ Abc , Mn || Bc - Mathematics

Advertisements
Advertisements

प्रश्न

If Δ ABC , MN || BC .

If AN : AC= 5 : 8, find ar(Δ AMN) : ar(Δ ABC) 

आकृति
योग

उत्तर

Given : `"AN"/"AC" = 5/8`

To Find : `("Ar" triangle "AMN")/("Ar" triangle "ABC")`

In Δ AMN and Δ ABC

∠AMN = ∠ ACB     ....(corresponding angles)

∠ ABC = ∠ ACB

∴ Δ AMN ∼ Δ ABC   .....(AA corollary)

∴ `("Ar" triangle "AMN")/("Ar" triangle "ABC") = "AN"^2/"AC"^2`

[The ration of areas of two similar triangle is equal to the ratio of square of their corresponding sides.]

`= (5/8)^2`

`("Ar" triangle "AMN")/("Ar" triangle "ABC") = 25/64`

Required ratio is 25 : 64.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Similarity - Exercise 15.1

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 15 Similarity
Exercise 15.1 | Q 6.1

संबंधित प्रश्न

In figure, find ∠L


E and F are points on the sides PQ and PR, respectively, of a ΔPQR. For the following case, state whether EF || QR.

PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm


In the following figure, if LM || CB and LN || CD, prove that `("AM")/("AB")=("AN")/("AD")`


State, true or false:

Two similar polygons are necessarily congruent.


The given figure shows a triangle PQR in which XY is parallel to QR. If PX : XQ = 1 : 3 and QR = 9 cm, find the length of XY.


Further, if the area of ΔPXY = x cm2; find, in terms of x the area of :

  1. triangle PQR.
  2. trapezium XQRY.

ΔABC~ΔPQR and ar(ΔABC) = 4, ar(ΔPQR) . If BC = 12cm, find QR. 


A model of an aeroplane is made to a scale of 1 : 400. Calculate : the length, in m, of the aeroplane, if length of its model is 16 cm.


In ΔABC, D and E are the points on sides AB and AC respectively. Find whether DE || BC, if AB = 6.3 cm, EC = 11.0 cm, AD = 0.8 cm and AE = 1.6 cm.


A plot of land of area 20km2 is represented on the map with a scale factor of 1:200000. Find: The area on the map that represented the plot of land.


In ΔABC, AP ⊥ BC and BQ ⊥ AC, B−P−C, A−Q−C, then show that ΔCPA ~ ΔCQB. If AP = 7, BQ = 8, BC = 12, then AC = ?


In ΔCPA and ΔCQB

∠CPA ≅ [∠ ______]    ...[each 90°]

∠ACP ≅ [∠ ______]   ...[common angle]

ΔCPA ~ ΔCQB     ......[______ similarity test]

`"AP"/"BQ" = (["______"])/"BC"`    .......[corresponding sides of similar triangles]

`7/8 = (["______"])/12`

AC × [______] = 7 × 12

AC = 10.5


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×