Advertisements
Advertisements
प्रश्न
If `hat"a", hat"b", hat"c"` are three unit vectors such that `hat"b"` and `hat"c"` are non-parallel and `hat"a" xx (hat"b" xx hat"c") = 1/2 hat"b"`, find the angle between `hat"a"` and `hat"c"`
उत्तर
hat"a", hat"b", hat"c"` are unit vectors
`|vec"a"| = |vec"b"| = |vec"c"|` = 1
`hat"a" xx (hat"b" xx hat"c") = 1/2 hat"b"`
`(vec"a" * vec"c")vec"b" - (vec"a"*vec"b")*vec"c" = 1/2 vec"b"`
Comapre on both sides
`vec"a"*vec"c" = 1/2`
`vec"a"*vec"b"` = 0
⇒ `vec"a" ⊥ vec"b"`
`|vec"a"||vec"c"| cos theta = 1/2`
`(1)(1) costheta = 1/2`
∴ θ = `pi/3`
APPEARS IN
संबंधित प्रश्न
If `bar "a" = hat"i" + 2hat"j" + 3hat"k" , bar"b" = 3hat"i" + 2hat"j"` and `bar"c" = 2hat"i" + hat"j" + 3hat"k"`, then verify that `bar"a" xx (bar"b" xx bar"c") = (bar"a".bar"c")bar"b" - (bar"a".bar"b")bar"c"`
Show that `bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b") = bar"0"`
Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar
If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`
Prove that `[vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"]` = 0
`vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = -hat"i" + 2hat"j" - 4hat"k", vec"c" = hat"i" + hat"j" + hat"k"` then find the va;ue of `(vec"a" xx vec"b")*(vec"a" xx vec"c")`
If a, b, care non-coplanar vectors and p = `("b" xx "c")/(["abc"]), "q" = ("c" xx "a")/(["abc"]), "r" = ("a" xx "b")/(["abc"])`, then a · p + b · q + c · r = ?
Let A(4, 7, 8), B(2, 3, 4) and C(2, 5, 7) be the vertices of a triangle ABC. The length of the internal bisector of angle A is ______
If `bar"a" = 3hat"i" - 2hat"j" + 7hat"k", bar"b" = 5hat"i" + hat"j" - 2hat"k"` and `bar "c" = hat"i" + hat"j" - hat"k"`, then `[bar"a" bar"b" bar"c"]` = ______.
If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is ______.
`"If" barc=3bara-2barb "and" [bara barb+barc bara+barb+barc]= 0 "then prove that" [bara barb barc]=0 `
If `barc= 3bara - 2barb and [bara barb+barc bara+barb+barc] = "then proved" [bara barb barc] = 0`
If `bar c = 3bara - 2barb` and `[bara barb + barc bara + barb + barc] = 0` then prove that `[bara barb barc] = 0`
Show that the volume of the parallelopiped whose coterminus edges are `bara barb barc` is `[(bara, barb, barc)].`
If `barc = 3bara - 2barb and [bara barb+barc bara+barb+barc] = 0` then prove that `[bara barb barc] = 0`
If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a" bar"b" +bar"c" bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a" bar"b" bar"c"]` = 0
If `barc=3bara-2barb` and `[bara barb+barc bara+barb+barc ]=0` then prove that `[bara barb barc]=0`
If, `barc = 3bara - 2barb`, then prove that `[bara barb barc] = 0`