हिंदी

Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar

योग

उत्तर

Let `bar"a", bar"b", bar"c", bar"c", bar"d"` be the position vectors of points A, B, C, D respectively.

∴ `bar"a" = 2hat"i" - hat"j", bar"b" = -3hat"i" + 4hat"k", bar"c" = -hat"i" - hat"j" + 4hat"k", bar"d" = -5hat"j" + 2hat"k"`

∴ `bar"AB" = bar"b" - bar"a"`

= `(-3hat"i" + 4hat"k") - (2hat"i" - hat"j")`

= `-5hat"i" + hat"j" + 4hat"k"`

`bar"AC" = bar"c" - bar"a"`

= `(-hat"i" - hat"j" + 4hat"k") - (2hat"i" - hat"j")`

= `-3hat"i" + 4hat"k"`

`bar"AD" = bar"d" - bar"a"`

= `bar"AD" = bar"d" - bar"a"`

= `(-5hat"j" + 2hat"k") - (2hat"i" - hat"j")`

= `-2hat"i" - 4hat"j" + 2hat"k"`

Points A, B, C, D are non-coplanar if `bar"AB", bar"AC"` and `bar"AD"` are non-coplanar.

`bar"AB"  bar"AC"  bar"AD" = |(-5, 1, 4),(-3, 0, 4),(-2, -4, 2)|`

= – 5(0 + 16) – 1(– 6 + 8) + 4(12 – 0)

= – 5(16) – 1(2) + 4(12)

= – 80 – 2 + 48

= – 34 ≠ 0

∴ The points A, B, C, D are non-coplanar.

shaalaa.com
Vector Triple Product
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.5: Vectors and Three Dimensional Geometry - Short Answers II

संबंधित प्रश्न

Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a"  bar"b"  bar"c"]`.


If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a"  bar"b"  bar"c"] = 0`.


If `bar "a" = hat"i" + 2hat"j" + 3hat"k" , bar"b" = 3hat"i" + 2hat"j"` and `bar"c" = 2hat"i" + hat"j" + 3hat"k"`, then verify that `bar"a" xx (bar"b" xx bar"c") = (bar"a".bar"c")bar"b" - (bar"a".bar"b")bar"c"`


Show that `bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b") = bar"0"`


If `bara = hati - 2hatj`, `barb = hati + 2hatj, barc = 2hati + hatj - 2hatk`, then find (i) `bara xx (barb xx barc)` (ii) `(bara xx barb) xx barc`. Are the results same? Justify.


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `(vec"a" xx vec"b") xx vec"c"`


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`


If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`


`vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = -hat"i" + 2hat"j" - 4hat"k", vec"c" = hat"i" + hat"j" + hat"k"` then find the va;ue of `(vec"a" xx vec"b")*(vec"a" xx vec"c")`


If `vec"a" = hat"i" + 2hat"j" + 3hat"k", vec"b" = 2hat"i" - hat"j" + hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"` and `vec"a" xx (vec"b" xx vec"c") = lvec"a" + "m"vec"b" + ""vec"c"`, find the values of l, m, n


If `hat"a", hat"b", hat"c"` are three unit vectors such that `hat"b"` and `hat"c"` are non-parallel and `hat"a" xx (hat"b" xx hat"c") = 1/2 hat"b"`, find the angle between `hat"a"` and `hat"c"`


`bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b")` = ?


If a, b, care non-coplanar vectors and p = `("b" xx "c")/(["abc"]), "q" = ("c" xx "a")/(["abc"]), "r" = ("a" xx "b")/(["abc"])`, then a · p + b · q + c · r = ?


If `bar"a" = 3hat"i" - 2hat"j" + 7hat"k", bar"b" = 5hat"i" + hat"j" - 2hat"k"` and `bar "c" = hat"i" + hat"j" - hat"k"`, then `[bar"a"  bar"b"  bar"c"]` = ______.


If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a"  bar"b"  bar"c"]` is equal to ______.


Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to ______.


If `barc= 3bara - 2barb  and [bara  barb+barc  bara+barb+barc] = "then proved" [bara barb barc] = 0`


If `bar c = 3bara - 2barb` and `[bara   barb + barc   bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If `overlinec = 3overlinea - 2overlineb` and `[overlinea         overlineb + overlinec         overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea  overlineb  overlinec]` = 0


Show that the volume of the parallelopiped whose coterminus edges are `bara barb barc` is `[(bara, barb, barc)].`


If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a"     bar"b" +bar"c"      bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a"  bar"b"  bar"c"]` = 0


If `barc = 3bara - 2barb and [bara   barb + barc   bara + barb + barc] = 0` then prove that `[bara  barb  barc]=0`


If `barc = 3bara - 2barb and [bara       barb+barc        bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If `barc=3bara-2barb` and `[bara       barb+barc       bara+barb+barc ]=0` then prove that `[bara  barb  barc]=0` 


If `barc = 3bara - 2barb`, then prove that `[bara  barb  barc]` = 0.


If, `barc = 3bara -2barb, "then prove that" [bara  barb  barc] = 0` 


If, `barc = 3bara - 2barb`, then prove that `[bara  barb  barc] = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×