Advertisements
Advertisements
प्रश्न
If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`
उत्तर
L.H.S = `vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(2, 3, -1),(3"m", 5, 2)|`
= `hat"i"(6 + 5) - hat"j"(4 + 3) + hat"k"(10 - 9)`
= `11hat"i" - 7hat"j" + hat"k"`
`(vec"a" xx vec"b") xx vec"c" = |(hat"i", hat"j", hat"k"),(11, -7, 1),(-1, -2, 3)|`
= `hat"i"(-21 + 2) - hat"j"(33 + 1) + hat"k"(- 22 - 7)`
= `-19hat"i" - 34hat"j" - 29hat"k"` .........(1)
R.H.S
`vec"a" * vec"c" = (2hat"i" + 3hat"j" - hat"k")*(-hat"i" - 2hat"j" + 3hat"k")`
= 2 – 6 – 3
= – 11
`(vec"a" * vec"c")vec"b" = -11(3hat"i" + 5hat"j" + 2hat"k")`
= `-33hat"i" - 55hat"j" - 22hat"k"`
`vec"b" * vec"c" = (3hat"i" + 5hat"j" + 2hat"k")*(-1hat"i" - 2hat"j" + 3hat"k")`
= – 3 – 10 + 6
= – 7
`(vec"b" * vec"c")vec"a" = -7(2hat"i" + 3hat"j" - hat"k")`
= `-14hat"i" - 21hat"j" + 7hat"k"`
`(vec"a" * vec"c")vec"b" - (vec"b" * vec"c")vec"a" = - 33hat"i" - 55hat"j" - 22hat"k" + 14hat"i" + 21hat"j" - 7hat"k"`
= `- 19hat"i" - 34hat"j" - 29hat"k"` ..........(2)
By (1) and (2)
`(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`
`vec"a" xx (vec"b" xx vec"c") = (vec"a"*vec"c")vec"b" - (vec"a"*vec"b")vec"c"`
APPEARS IN
संबंधित प्रश्न
Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar
If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `(vec"a" xx vec"b") xx vec"c"`
For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`
`vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = -hat"i" + 2hat"j" - 4hat"k", vec"c" = hat"i" + hat"j" + hat"k"` then find the va;ue of `(vec"a" xx vec"b")*(vec"a" xx vec"c")`
If a, b, care non-coplanar vectors and p = `("b" xx "c")/(["abc"]), "q" = ("c" xx "a")/(["abc"]), "r" = ("a" xx "b")/(["abc"])`, then a · p + b · q + c · r = ?
Let A(4, 7, 8), B(2, 3, 4) and C(2, 5, 7) be the vertices of a triangle ABC. The length of the internal bisector of angle A is ______
If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a" bar"b" bar"c"]` is equal to ______.
Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to ______.
If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is ______.
If `bar c = 3bara - 2barb` and `[bara barb + barc bara + barb + barc] = 0` then prove that `[bara barb barc] = 0`
If `overlinec = 3overlinea - 2overlineb` and `[overlinea overlineb + overlinec overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea overlineb overlinec]` = 0
If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a" bar"b" +bar"c" bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a" bar"b" bar"c"]` = 0
If `barc = 3bara - 2barb and [bara barb + barc bara + barb + barc] = 0` then prove that `[bara barb barc]=0`
If `barc = 3bara - 2barb`, then prove that `[bara barb barc]` = 0.
If, `barc = 3bara -2barb, "then prove that" [bara barb barc] = 0`
If, `barc = 3bara - 2barb`, then prove that `[bara barb barc] = 0`