English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If aijkbijkcijka→=2i^+3j^-k^,b→=3i^+5j^+2k^,c→=-i^-2j^+3k^, verify that abcacbbca(a→×b→)×c→=(a→⋅c→)b→-(b→⋅c→)a→ - Mathematics

Advertisements
Advertisements

Question

If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`

Sum

Solution

L.H.S = `vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(2, 3, -1),(3"m", 5, 2)|`

= `hat"i"(6 + 5) - hat"j"(4 + 3) + hat"k"(10 - 9)`

= `11hat"i" - 7hat"j" + hat"k"`

`(vec"a" xx vec"b") xx vec"c" = |(hat"i", hat"j", hat"k"),(11, -7, 1),(-1, -2, 3)|`

= `hat"i"(-21 + 2) - hat"j"(33 + 1) + hat"k"(- 22 - 7)`

= `-19hat"i" - 34hat"j" - 29hat"k"`   .........(1)

R.H.S

`vec"a" * vec"c" = (2hat"i" + 3hat"j" - hat"k")*(-hat"i" - 2hat"j" + 3hat"k")`

= 2 – 6 – 3

= – 11

`(vec"a" * vec"c")vec"b" = -11(3hat"i" + 5hat"j" + 2hat"k")`

= `-33hat"i" - 55hat"j" - 22hat"k"`

`vec"b" * vec"c" = (3hat"i" + 5hat"j" + 2hat"k")*(-1hat"i" - 2hat"j" + 3hat"k")`

= – 3 – 10 + 6

= – 7

`(vec"b" * vec"c")vec"a" = -7(2hat"i" + 3hat"j" - hat"k")`

= `-14hat"i" - 21hat"j" + 7hat"k"`

`(vec"a" * vec"c")vec"b" - (vec"b" * vec"c")vec"a" = - 33hat"i" - 55hat"j" - 22hat"k" + 14hat"i" + 21hat"j" - 7hat"k"`

= `- 19hat"i" - 34hat"j" - 29hat"k"`  ..........(2)

By (1) and (2)

`(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`

`vec"a" xx  (vec"b" xx vec"c") = (vec"a"*vec"c")vec"b" - (vec"a"*vec"b")vec"c"`

shaalaa.com
Vector Triple Product
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.3 [Page 242]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.3 | Q 4. (i) | Page 242

RELATED QUESTIONS

Prove that `[bar"a"  bar"b" + bar"c"  bar"a" + bar"b" + bar"c"] = 0`


Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a"  bar"b"  bar"c"]`.


Show that `bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b") = bar"0"`


If `bara = hati - 2hatj`, `barb = hati + 2hatj, barc = 2hati + hatj - 2hatk`, then find (i) `bara xx (barb xx barc)` (ii) `(bara xx barb) xx barc`. Are the results same? Justify.


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`


For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`


Prove that `[vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"]` = 0


If `vec"a" = hat"i" + 2hat"j" + 3hat"k", vec"b" = 2hat"i" - hat"j" + hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"` and `vec"a" xx (vec"b" xx vec"c") = lvec"a" + "m"vec"b" + ""vec"c"`, find the values of l, m, n


If `hat"a", hat"b", hat"c"` are three unit vectors such that `hat"b"` and `hat"c"` are non-parallel and `hat"a" xx (hat"b" xx hat"c") = 1/2 hat"b"`, find the angle between `hat"a"` and `hat"c"`


If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a"  bar"b"  bar"c"]` is equal to ______.


Let three vectors `veca, vecb` and `vecc` be such that `vecc` is coplanar with `veca` and `vecb, vecc,` = 7 and `vecb` is perpendicular to `vecc` where `veca = -hati + hatj + hatk` and `vecb = 2hati + hatk`, then the value of `2|veca + vecb + vecc|^2` is ______.


Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to ______.


If `barc= 3bara - 2barb  and [bara  barb+barc  bara+barb+barc] = "then proved" [bara barb barc] = 0`


If `overlinec = 3overlinea - 2overlineb` and `[overlinea         overlineb + overlinec         overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea  overlineb  overlinec]` = 0


Show that the volume of the parallelopiped whose coterminus edges are `bara barb barc` is `[(bara, barb, barc)].`


If `barc = 3bara - 2barb and [bara     barb+barc       bara+barb+barc] = 0` then prove that `[bara  barb  barc] = 0`


If `barc=3bara-2barb` and `[bara       barb+barc       bara+barb+barc ]=0` then prove that `[bara  barb  barc]=0` 


If `barc = 3bara - 2barb`, then prove that `[bara  barb  barc]` = 0.


If, `barc = 3bara - 2barb`, then prove that `[bara  barb  barc] = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×