English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

For any vector aa→, prove that iaijajkakai^×(a→×i^)+j^×(a→×j^)+k^×(a→×k^)=2a→ - Mathematics

Advertisements
Advertisements

Question

For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`

Sum

Solution

Let `vec"a" = "a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k"`

`vec"a" xx hat"i" = |(hat"i", hat"j", hat"k"),("a"_1, "a"_2, "a"_3),(1, 0, 0)|`

= `hat"i"(0) - hat"j"(- "a"_3) + hat"k"(0 - "a"_2)`

`hat"i" xx (vec"a" xx hat"i") = |(hat"i", hat"j", hat"k"),(1, 0, 0),(0, "a"_3, - "a"_2)|`

= `hat"i"(0) - hat"j"(- "a"_2) + hat"k"("a"_3)`

= `"a"_2hat"j" + "a"_3hat"k"`

Similarly `hat"j" xx (vec"a" xx hat"j") = "a"_1hat"i" + "a"_3hat"k"`

`hat"k" xx (vec"a" xx hat"k") - "a"_1hat"i" + "a"_2hat"j"`

`hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k")`

= `2"a"_1hat"i" + 2"a"_2hat"j" + 2"a"_3hat"k"`

= `2("a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k")`

= `2hat"a"`

shaalaa.com
Vector Triple Product
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.3 [Page 242]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.3 | Q 2 | Page 242

RELATED QUESTIONS

If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a"  bar"b"  bar"c"] = 0`.


If `bar "a" = hat"i" + 2hat"j" + 3hat"k" , bar"b" = 3hat"i" + 2hat"j"` and `bar"c" = 2hat"i" + hat"j" + 3hat"k"`, then verify that `bar"a" xx (bar"b" xx bar"c") = (bar"a".bar"c")bar"b" - (bar"a".bar"b")bar"c"`


If `bara = hati - 2hatj`, `barb = hati + 2hatj, barc = 2hati + hatj - 2hatk`, then find (i) `bara xx (barb xx barc)` (ii) `(bara xx barb) xx barc`. Are the results same? Justify.


Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`


Prove that `[vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"]` = 0


If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`


If `vec"a", vec"b", vec"c", vec"d"` are coplanar vectors, show that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`


If `hat"a", hat"b", hat"c"` are three unit vectors such that `hat"b"` and `hat"c"` are non-parallel and `hat"a" xx (hat"b" xx hat"c") = 1/2 hat"b"`, find the angle between `hat"a"` and `hat"c"`


`bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b")` = ?


Let three vectors `veca, vecb` and `vecc` be such that `vecc` is coplanar with `veca` and `vecb, vecc,` = 7 and `vecb` is perpendicular to `vecc` where `veca = -hati + hatj + hatk` and `vecb = 2hati + hatk`, then the value of `2|veca + vecb + vecc|^2` is ______.


`"If"  barc=3bara-2barb   "and" [bara    barb+barc     bara+barb+barc]= 0  "then prove that" [bara  barb  barc]=0  `


If `barc= 3bara - 2barb  and [bara  barb+barc  bara+barb+barc] = "then proved" [bara barb barc] = 0`


Show that the volume of the parallelopiped whose coterminus edges are `bara barb barc` is `[(bara, barb, barc)].`


If `barc = 3bara - 2barb and [bara     barb+barc       bara+barb+barc] = 0` then prove that `[bara  barb  barc] = 0`


If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a"     bar"b" +bar"c"      bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a"  bar"b"  bar"c"]` = 0


If `barc=3bara-2barb` and `[bara       barb+barc       bara+barb+barc ]=0` then prove that `[bara  barb  barc]=0` 


If `barc = 3bara - 2barb`, then prove that `[bara  barb  barc]` = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×