English

If aijkbija¯=i^+2j^+3k^,b¯=3i^+2j^ and cijkc¯=2i^+j^+3k^, then verify that abcacbabca¯×(b¯×c¯)=(a¯.c¯)b¯-(a¯.b¯)c¯ - Mathematics and Statistics

Advertisements
Advertisements

Question

If `bar "a" = hat"i" + 2hat"j" + 3hat"k" , bar"b" = 3hat"i" + 2hat"j"` and `bar"c" = 2hat"i" + hat"j" + 3hat"k"`, then verify that `bar"a" xx (bar"b" xx bar"c") = (bar"a".bar"c")bar"b" - (bar"a".bar"b")bar"c"`

Sum

Solution

`bar"b" xx bar"c" = |(hat"i",hat"j",hat"k"),(3,2,0),(2,1,3)|`

`= (6 - 0)hat"i" - (9 - 0)hat"j" + (3 - 4)hat"k"`

`= 6hat"i" - 9hat"j" - hat"k"`

∴ `bar"a" xx (bar"b" xx bar"c") = |(hat"i",hat"j", hat"k"),(1,2,3),(6,-9,-1)|`

`= (- 2 + 27)hat"i" - (- 1 - 18)hat"j" + (- 9 - 12)hat"k"`

`= 25hat"i" + 19hat"j" - 21hat"k"`    ...(1)

`bar"a" . bar"c" = (hat"i" + 2hat"j" + 3hat"k").(2hat"i" + hat"j" + 3hat"k")`

= (1)(2) + (2)(1) + (3)(3)

= 2 + 2 + 9 = 13

∴ `(bar"a" . bar"c").bar"b" = 13(3hat"i" + 2hat"j") = 39hat"i" + 26hat"j"`

Also, `(bar"a" . bar"b") = (hat"i" + 2hat"j" + 3hat"k").(3hat"i" + 2hat"j")`

= (1)(3) + (2)(2) + (3)(0)

= 3 + 4 + 0 = 7

∴`(bar"a" . bar"b").bar"c" = 7(2hat"i" + hat"j" + 3hat"k") = 14hat"i" + 7hat"j" + 21hat"k"`

∴`(bar"a" . bar"c").bar"b" - (bar"a" . bar"b").bar"c"`

`= (39hat"i" + 26hat"j") - (14hat"i" + 7hat"j" + 21hat"k")`

`= 25hat"i" + 19hat"j" - 21hat"k"`    .....(2)

From (1) and (2), we get

`bar"a" xx (bar"b" xx bar"c") = (bar"a".bar"c")bar"b" - (bar"a".bar"b")bar"c"`

shaalaa.com
Vector Triple Product
  Is there an error in this question or solution?
Chapter 5: Vectors - Exercise 5.5 [Page 184]

RELATED QUESTIONS

Prove that `[bar"a"  bar"b" + bar"c"  bar"a" + bar"b" + bar"c"] = 0`


Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a"  bar"b"  bar"c"]`.


If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a"  bar"b"  bar"c"] = 0`.


Show that `bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b") = bar"0"`


If `bara = hati - 2hatj`, `barb = hati + 2hatj, barc = 2hati + hatj - 2hatk`, then find (i) `bara xx (barb xx barc)` (ii) `(bara xx barb) xx barc`. Are the results same? Justify.


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`


For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`


Prove that `[vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"]` = 0


If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `vec"a" xx (vec"b" xx vec"c") = (vec"a"*vec"c")vec"b" - (vec"a"*vec"b")vec"c"`


`vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = -hat"i" + 2hat"j" - 4hat"k", vec"c" = hat"i" + hat"j" + hat"k"` then find the va;ue of `(vec"a" xx vec"b")*(vec"a" xx vec"c")`


If `vec"a", vec"b", vec"c", vec"d"` are coplanar vectors, show that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`


If `vec"a" = hat"i" + 2hat"j" + 3hat"k", vec"b" = 2hat"i" - hat"j" + hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"` and `vec"a" xx (vec"b" xx vec"c") = lvec"a" + "m"vec"b" + ""vec"c"`, find the values of l, m, n


If `hat"a", hat"b", hat"c"` are three unit vectors such that `hat"b"` and `hat"c"` are non-parallel and `hat"a" xx (hat"b" xx hat"c") = 1/2 hat"b"`, find the angle between `hat"a"` and `hat"c"`


If `bar"a" = 3hat"i" - 2hat"j" + 7hat"k", bar"b" = 5hat"i" + hat"j" - 2hat"k"` and `bar "c" = hat"i" + hat"j" - hat"k"`, then `[bar"a"  bar"b"  bar"c"]` = ______.


If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a"  bar"b"  bar"c"]` is equal to ______.


Let three vectors `veca, vecb` and `vecc` be such that `vecc` is coplanar with `veca` and `vecb, vecc,` = 7 and `vecb` is perpendicular to `vecc` where `veca = -hati + hatj + hatk` and `vecb = 2hati + hatk`, then the value of `2|veca + vecb + vecc|^2` is ______.


If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is ______.


If `barc= 3bara - 2barb  and [bara  barb+barc  bara+barb+barc] = "then proved" [bara barb barc] = 0`


If `bar c = 3bara - 2barb` and `[bara   barb + barc   bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If `overlinec = 3overlinea - 2overlineb` and `[overlinea         overlineb + overlinec         overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea  overlineb  overlinec]` = 0


Show that the volume of the parallelopiped whose coterminus edges are `bara barb barc` is `[(bara, barb, barc)].`


If `barc = 3bara - 2barb and [bara     barb+barc       bara+barb+barc] = 0` then prove that `[bara  barb  barc] = 0`


If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a"     bar"b" +bar"c"      bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a"  bar"b"  bar"c"]` = 0


If `barc = 3bara - 2barb and [bara       barb+barc        bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If `barc=3bara-2barb` and `[bara       barb+barc       bara+barb+barc ]=0` then prove that `[bara  barb  barc]=0` 


If `barc = 3bara - 2barb`, then prove that `[bara  barb  barc]` = 0.


If, `barc = 3bara - 2barb`, then prove that `[bara  barb  barc] = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×