English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Aijkbijkcijka→=2i^+3j^-k^,b→=-i^+2j^-4k^,c→=i^+j^+k^ then find the va;ue of abac(a→×b→)⋅(a→×c→) - Mathematics

Advertisements
Advertisements

Question

`vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = -hat"i" + 2hat"j" - 4hat"k", vec"c" = hat"i" + hat"j" + hat"k"` then find the va;ue of `(vec"a" xx vec"b")*(vec"a" xx vec"c")`

Sum

Solution

`vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(2, 3, -1),(-1, 2, -4)|`

= `hat"i"(- 12 + 2) - hat"j"(- 8 - 1) + hat"k"(4 + 3)`

= `-10hat"j" + 9hat"j" + 7hat"k"`

`vec"a" xx vec"c" = |(hat"i", vec"j", vec"k"),(2, 3, -1),(1, 1, 1)|`

= `hat"i"(3 + 1) - hat"j"(2 + 1) + hat"k"(2 - 3)`

= `4hat"i" - 3hat"j" - hat"k"`

`(vec"a" xx vec"b")*(vec"a" xx vec"c")` = (– 10)4 + 9(– 3) + 7(–1)

= – 40 - 27 – 7

= – 74

shaalaa.com
Vector Triple Product
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.3 [Page 242]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.3 | Q 5 | Page 242

RELATED QUESTIONS

Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a"  bar"b"  bar"c"]`.


Show that `bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b") = bar"0"`


Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `(vec"a" xx vec"b") xx vec"c"`


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`


If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`


If `vec"a", vec"b", vec"c", vec"d"` are coplanar vectors, show that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`


If a, b, care non-coplanar vectors and p = `("b" xx "c")/(["abc"]), "q" = ("c" xx "a")/(["abc"]), "r" = ("a" xx "b")/(["abc"])`, then a · p + b · q + c · r = ?


Let A(4, 7, 8), B(2, 3, 4) and C(2, 5, 7) be the vertices of a triangle ABC. The length of the internal bisector of angle A is ______ 


If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a"  bar"b"  bar"c"]` is equal to ______.


Let three vectors `veca, vecb` and `vecc` be such that `vecc` is coplanar with `veca` and `vecb, vecc,` = 7 and `vecb` is perpendicular to `vecc` where `veca = -hati + hatj + hatk` and `vecb = 2hati + hatk`, then the value of `2|veca + vecb + vecc|^2` is ______.


Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to ______.


If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is ______.


If `bar c = 3bara - 2barb` and `[bara   barb + barc   bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If `overlinec = 3overlinea - 2overlineb` and `[overlinea         overlineb + overlinec         overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea  overlineb  overlinec]` = 0


If `barc = 3bara - 2barb and [bara   barb + barc   bara + barb + barc] = 0` then prove that `[bara  barb  barc]=0`


If `barc=3bara-2barb` and `[bara       barb+barc       bara+barb+barc ]=0` then prove that `[bara  barb  barc]=0` 


If, `barc = 3bara - 2barb`, then prove that `[bara  barb  barc] = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×