English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

If aijkbijkcijka→=2i^+3j^-k^,b→=3i^+5j^+2k^,c→=-i^-2j^+3k^, verify that abcacbabca→×(b→×c→)=(a→⋅c→)b→-(a→⋅b→)c→ - Mathematics

Advertisements
Advertisements

Question

If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `vec"a" xx (vec"b" xx vec"c") = (vec"a"*vec"c")vec"b" - (vec"a"*vec"b")vec"c"`

Sum

Solution

L.H.S

`vec"b" xx vec"c" = |(hat"i", vec"j", vec"k"),(3, 5, 2),(-1, -2, 3)|`

= `hat"i"(15 + 4) - hat"j"(9 + 2) + hat"k"(-6 + 5)`

= `19hat"i" - 11hat"j" - hat"k"`

`vec"a" xx (vec"b" xx vec"c") = |(hat"i", hat"j", hat"k"),(2, 3, -1),(19, -11, -1)|`

= `hat"i"(- 3 - 11) - hat"j"(- 2 + 19) + hat"k"(- 22 - 57)`

= `-14hat"i" - 17hat"j" - 79hat"k"`  ........(1)

R.H.S

`vec"a"*vec"c"` = – 2 – 6 – 3 = – 11

`(vec"a"*vec"c")vec"b" = -11(3hat"i" + 5hat"j" + 2hat"k")`

= `-33hat"i" - 55hat"j" - 22hat"k"`

`vec"a"*vec"b"` = 6 + 15 – 2 = 19

`(vec"a"*vec"b")vec"c" = 19(- hat"i" - 2hat"j" + 3hat"k")`

= `- 19hat"i" - 38hat"j" + 57hat"k"`

`(vec"a"*vec"c")vec"b" - (vec"a"*vec"b")vec"c" = -33hat"i" - 55hat"j" - 22hat"k" + 19hat"i" + 38hat"j" - 57hat"k"`

= `14hat"i" - 17hat"j" - 79hat"k"`  ........(2)

By (1) and (2)

`vec"a" xx (vec"b" xx vec"c") = (vec"a"*vec"c")vec"b" - (vec"a"*vec"c")vec"b"`

shaalaa.com
Vector Triple Product
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.3 [Page 242]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.3 | Q 4. (ii) | Page 242

RELATED QUESTIONS

If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a"  bar"b"  bar"c"] = 0`.


Show that `bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b") = bar"0"`


If `bara = hati - 2hatj`, `barb = hati + 2hatj, barc = 2hati + hatj - 2hatk`, then find (i) `bara xx (barb xx barc)` (ii) `(bara xx barb) xx barc`. Are the results same? Justify.


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `(vec"a" xx vec"b") xx vec"c"`


For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`


Prove that `[vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"]` = 0


If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`


`vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = -hat"i" + 2hat"j" - 4hat"k", vec"c" = hat"i" + hat"j" + hat"k"` then find the va;ue of `(vec"a" xx vec"b")*(vec"a" xx vec"c")`


If `vec"a" = hat"i" + 2hat"j" + 3hat"k", vec"b" = 2hat"i" - hat"j" + hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"` and `vec"a" xx (vec"b" xx vec"c") = lvec"a" + "m"vec"b" + ""vec"c"`, find the values of l, m, n


If `hat"a", hat"b", hat"c"` are three unit vectors such that `hat"b"` and `hat"c"` are non-parallel and `hat"a" xx (hat"b" xx hat"c") = 1/2 hat"b"`, find the angle between `hat"a"` and `hat"c"`


Let A(4, 7, 8), B(2, 3, 4) and C(2, 5, 7) be the vertices of a triangle ABC. The length of the internal bisector of angle A is ______ 


If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a"  bar"b"  bar"c"]` is equal to ______.


If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is ______.


If `bar c = 3bara - 2barb` and `[bara   barb + barc   bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If `overlinec = 3overlinea - 2overlineb` and `[overlinea         overlineb + overlinec         overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea  overlineb  overlinec]` = 0


If `barc = 3bara - 2barb and [bara     barb+barc       bara+barb+barc] = 0` then prove that `[bara  barb  barc] = 0`


If `barc = 3bara - 2barb`, then prove that `[bara  barb  barc]` = 0.


If, `barc = 3bara -2barb, "then prove that" [bara  barb  barc] = 0` 


If, `barc = 3bara - 2barb`, then prove that `[bara  barb  barc] = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×