English

If cabc¯=3a¯-2b¯, then prove that abc[a¯ b¯ c¯]=0. - Mathematics and Statistics

Advertisements
Advertisements

Question

If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a"  bar"b"  bar"c"] = 0`.

Sum

Solution

We use the results: `bar"b" xx bar"b" = bar"0"` and if in a scalar triple product, two vectors are equal, then the scalar triple product is zero.

`[bar"a"  bar"b"  bar"c"] = bar"a".(bar"b" xx bar"c")`

`= bar"a".[bar"b" xx (3bar"a" - 2bar"b")]`

`= bar"a".(3bar"b" xx bar"a" - 2bar"b" xx bar"b")`

`= bar"a". (3bar"b" xx bar"a" - bar"0")`

`= 3bar"a".(bar"b" xx bar"a")`

= 3 × 0

= 0

Alternative Method:

`bar"c" = 3bar"a" - 2bar"b"`

∴ `bar"c"` is a linear combination of `bar"a"  "and"  bar"b"`.

∴ `bar"a" , bar"b" , bar"c"` are coplanar.

∴ `[bar"a"  bar"b"  bar"c"] = 0`

shaalaa.com
Vector Triple Product
  Is there an error in this question or solution?
Chapter 5: Vectors - Exercise 5.5 [Page 184]

RELATED QUESTIONS

Prove that `[bar"a"  bar"b" + bar"c"  bar"a" + bar"b" + bar"c"] = 0`


Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a"  bar"b"  bar"c"]`.


If `bar "a" = hat"i" + 2hat"j" + 3hat"k" , bar"b" = 3hat"i" + 2hat"j"` and `bar"c" = 2hat"i" + hat"j" + 3hat"k"`, then verify that `bar"a" xx (bar"b" xx bar"c") = (bar"a".bar"c")bar"b" - (bar"a".bar"b")bar"c"`


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`


For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`


Prove that `[vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"]` = 0


`vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = -hat"i" + 2hat"j" - 4hat"k", vec"c" = hat"i" + hat"j" + hat"k"` then find the va;ue of `(vec"a" xx vec"b")*(vec"a" xx vec"c")`


If `vec"a" = hat"i" + 2hat"j" + 3hat"k", vec"b" = 2hat"i" - hat"j" + hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"` and `vec"a" xx (vec"b" xx vec"c") = lvec"a" + "m"vec"b" + ""vec"c"`, find the values of l, m, n


If `hat"a", hat"b", hat"c"` are three unit vectors such that `hat"b"` and `hat"c"` are non-parallel and `hat"a" xx (hat"b" xx hat"c") = 1/2 hat"b"`, find the angle between `hat"a"` and `hat"c"`


`bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b")` = ?


If a, b, care non-coplanar vectors and p = `("b" xx "c")/(["abc"]), "q" = ("c" xx "a")/(["abc"]), "r" = ("a" xx "b")/(["abc"])`, then a · p + b · q + c · r = ?


Let A(4, 7, 8), B(2, 3, 4) and C(2, 5, 7) be the vertices of a triangle ABC. The length of the internal bisector of angle A is ______ 


If `bar"a" = 3hat"i" - 2hat"j" + 7hat"k", bar"b" = 5hat"i" + hat"j" - 2hat"k"` and `bar "c" = hat"i" + hat"j" - hat"k"`, then `[bar"a"  bar"b"  bar"c"]` = ______.


If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a"  bar"b"  bar"c"]` is equal to ______.


Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to ______.


If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is ______.


If `barc= 3bara - 2barb  and [bara  barb+barc  bara+barb+barc] = "then proved" [bara barb barc] = 0`


If `overlinec = 3overlinea - 2overlineb` and `[overlinea         overlineb + overlinec         overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea  overlineb  overlinec]` = 0


Show that the volume of the parallelopiped whose coterminus edges are `bara barb barc` is `[(bara, barb, barc)].`


If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a"     bar"b" +bar"c"      bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a"  bar"b"  bar"c"]` = 0


If `barc = 3bara - 2barb and [bara   barb + barc   bara + barb + barc] = 0` then prove that `[bara  barb  barc]=0`


If `barc = 3bara - 2barb and [bara       barb+barc        bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If `barc = 3bara - 2barb`, then prove that `[bara  barb  barc]` = 0.


If, `barc = 3bara - 2barb`, then prove that `[bara  barb  barc] = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×