मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

For any vector aa→, prove that iaijajkakai^×(a→×i^)+j^×(a→×j^)+k^×(a→×k^)=2a→ - Mathematics

Advertisements
Advertisements

प्रश्न

For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`

बेरीज

उत्तर

Let `vec"a" = "a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k"`

`vec"a" xx hat"i" = |(hat"i", hat"j", hat"k"),("a"_1, "a"_2, "a"_3),(1, 0, 0)|`

= `hat"i"(0) - hat"j"(- "a"_3) + hat"k"(0 - "a"_2)`

`hat"i" xx (vec"a" xx hat"i") = |(hat"i", hat"j", hat"k"),(1, 0, 0),(0, "a"_3, - "a"_2)|`

= `hat"i"(0) - hat"j"(- "a"_2) + hat"k"("a"_3)`

= `"a"_2hat"j" + "a"_3hat"k"`

Similarly `hat"j" xx (vec"a" xx hat"j") = "a"_1hat"i" + "a"_3hat"k"`

`hat"k" xx (vec"a" xx hat"k") - "a"_1hat"i" + "a"_2hat"j"`

`hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k")`

= `2"a"_1hat"i" + 2"a"_2hat"j" + 2"a"_3hat"k"`

= `2("a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k")`

= `2hat"a"`

shaalaa.com
Vector Triple Product
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Applications of Vector Algebra - Exercise 6.3 [पृष्ठ २४२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 6 Applications of Vector Algebra
Exercise 6.3 | Q 2 | पृष्ठ २४२

संबंधित प्रश्‍न

Prove that `[bar"a"  bar"b" + bar"c"  bar"a" + bar"b" + bar"c"] = 0`


Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a"  bar"b"  bar"c"]`.


If `bara = hati - 2hatj`, `barb = hati + 2hatj, barc = 2hati + hatj - 2hatk`, then find (i) `bara xx (barb xx barc)` (ii) `(bara xx barb) xx barc`. Are the results same? Justify.


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `(vec"a" xx vec"b") xx vec"c"`


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`


If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`


If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `vec"a" xx (vec"b" xx vec"c") = (vec"a"*vec"c")vec"b" - (vec"a"*vec"b")vec"c"`


If `vec"a", vec"b", vec"c", vec"d"` are coplanar vectors, show that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`


`bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b")` = ?


If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a"  bar"b"  bar"c"]` is equal to ______.


If `barc= 3bara - 2barb  and [bara  barb+barc  bara+barb+barc] = "then proved" [bara barb barc] = 0`


If `overlinec = 3overlinea - 2overlineb` and `[overlinea         overlineb + overlinec         overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea  overlineb  overlinec]` = 0


If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a"     bar"b" +bar"c"      bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a"  bar"b"  bar"c"]` = 0


If `barc = 3bara - 2barb and [bara       barb+barc        bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If, `barc = 3bara -2barb, "then prove that" [bara  barb  barc] = 0` 


If, `barc = 3bara - 2barb`, then prove that `[bara  barb  barc] = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×