Advertisements
Advertisements
प्रश्न
For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`
उत्तर
Let `vec"a" = "a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k"`
`vec"a" xx hat"i" = |(hat"i", hat"j", hat"k"),("a"_1, "a"_2, "a"_3),(1, 0, 0)|`
= `hat"i"(0) - hat"j"(- "a"_3) + hat"k"(0 - "a"_2)`
`hat"i" xx (vec"a" xx hat"i") = |(hat"i", hat"j", hat"k"),(1, 0, 0),(0, "a"_3, - "a"_2)|`
= `hat"i"(0) - hat"j"(- "a"_2) + hat"k"("a"_3)`
= `"a"_2hat"j" + "a"_3hat"k"`
Similarly `hat"j" xx (vec"a" xx hat"j") = "a"_1hat"i" + "a"_3hat"k"`
`hat"k" xx (vec"a" xx hat"k") - "a"_1hat"i" + "a"_2hat"j"`
`hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k")`
= `2"a"_1hat"i" + 2"a"_2hat"j" + 2"a"_3hat"k"`
= `2("a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k")`
= `2hat"a"`
APPEARS IN
संबंधित प्रश्न
Prove that `[bar"a" bar"b" + bar"c" bar"a" + bar"b" + bar"c"] = 0`
Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a" bar"b" bar"c"]`.
If `bara = hati - 2hatj`, `barb = hati + 2hatj, barc = 2hati + hatj - 2hatk`, then find (i) `bara xx (barb xx barc)` (ii) `(bara xx barb) xx barc`. Are the results same? Justify.
If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `(vec"a" xx vec"b") xx vec"c"`
If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`
If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`
If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `vec"a" xx (vec"b" xx vec"c") = (vec"a"*vec"c")vec"b" - (vec"a"*vec"b")vec"c"`
If `vec"a", vec"b", vec"c", vec"d"` are coplanar vectors, show that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`
`bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b")` = ?
If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a" bar"b" bar"c"]` is equal to ______.
If `barc= 3bara - 2barb and [bara barb+barc bara+barb+barc] = "then proved" [bara barb barc] = 0`
If `overlinec = 3overlinea - 2overlineb` and `[overlinea overlineb + overlinec overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea overlineb overlinec]` = 0
If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a" bar"b" +bar"c" bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a" bar"b" bar"c"]` = 0
If `barc = 3bara - 2barb and [bara barb+barc bara + barb + barc] = 0` then prove that `[bara barb barc] = 0`
If, `barc = 3bara -2barb, "then prove that" [bara barb barc] = 0`
If, `barc = 3bara - 2barb`, then prove that `[bara barb barc] = 0`