Advertisements
Advertisements
प्रश्न
If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `(vec"a" xx vec"b") xx vec"c"`
उत्तर
`vec"a" xx vec"b" = |(hat"i", hat"j", hat"k"),(1, -2, 3),(2, 1, -2)|`
= `hat"i"(4 - 3) - hat"j"(- 2 - 6) + hat"k"(1 + 4)`
= `hat"i" + 8hat"j" + 5hat"k"`
`vec"a" xx vec"b" xx vec"c" = |(hat"i", hat"j", hat"k"),(1, 8, 5),(3, 2, 1)|`
`hat"i"(8 - 10) - hat"j"(1 - 15) + hat"k"(2 - 24)`
= `- 2hat"i" + 14hat"j" - 22hat"k"`
APPEARS IN
संबंधित प्रश्न
Prove that `[bar"a" bar"b" + bar"c" bar"a" + bar"b" + bar"c"] = 0`
Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a" bar"b" bar"c"]`.
If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a" bar"b" bar"c"] = 0`.
If `bar "a" = hat"i" + 2hat"j" + 3hat"k" , bar"b" = 3hat"i" + 2hat"j"` and `bar"c" = 2hat"i" + hat"j" + 3hat"k"`, then verify that `bar"a" xx (bar"b" xx bar"c") = (bar"a".bar"c")bar"b" - (bar"a".bar"b")bar"c"`
Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar
For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`
If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = 3hat"i" + 5hat"j" + 2hat"k", vec"c" = - hat"i" - 2hat"j" + 3hat"k"`, verify that `(vec"a" xx vec"b") xx vec"c" = (vec"a"*vec"c")vec"b" - (vec"b" * vec"c")vec"a"`
`vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = -hat"i" + 2hat"j" - 4hat"k", vec"c" = hat"i" + hat"j" + hat"k"` then find the va;ue of `(vec"a" xx vec"b")*(vec"a" xx vec"c")`
If a, b, care non-coplanar vectors and p = `("b" xx "c")/(["abc"]), "q" = ("c" xx "a")/(["abc"]), "r" = ("a" xx "b")/(["abc"])`, then a · p + b · q + c · r = ?
Let A(4, 7, 8), B(2, 3, 4) and C(2, 5, 7) be the vertices of a triangle ABC. The length of the internal bisector of angle A is ______
If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a" bar"b" bar"c"]` is equal to ______.
Let three vectors `veca, vecb` and `vecc` be such that `vecc` is coplanar with `veca` and `vecb, vecc,` = 7 and `vecb` is perpendicular to `vecc` where `veca = -hati + hatj + hatk` and `vecb = 2hati + hatk`, then the value of `2|veca + vecb + vecc|^2` is ______.
`"If" barc=3bara-2barb "and" [bara barb+barc bara+barb+barc]= 0 "then prove that" [bara barb barc]=0 `
If `barc = 3bara - 2barb and [bara barb+barc bara+barb+barc] = 0` then prove that `[bara barb barc] = 0`
If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a" bar"b" +bar"c" bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a" bar"b" bar"c"]` = 0
If `barc = 3bara - 2barb and [bara barb + barc bara + barb + barc] = 0` then prove that `[bara barb barc]=0`
If `barc = 3bara - 2barb and [bara barb+barc bara + barb + barc] = 0` then prove that `[bara barb barc] = 0`
If `barc = 3bara - 2barb`, then prove that `[bara barb barc]` = 0.
If, `barc = 3bara -2barb, "then prove that" [bara barb barc] = 0`