Advertisements
Advertisements
प्रश्न
If `vec"a" = hat"i" - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `vec"a" xx (vec"b" xx vec"c")`
उत्तर
`vec"b" xx vec"c" = |(hat"i", hat"j", hat"k"),(2, 1, -2),(3, 2, 1)|`
= `hat"i"(1 + 4) - hat"j"(2 + 6) + hat"k"(4 - 3)`
= `5hat"i" - 8hat"j" + hat"k"`
`vec"a" xx vec"b" xx vec"c" = |(hat"i", hat"j", hat"k"),(1, -2, 3),(5, -8, 1)|`
= `hat"i"(- 2 + 24) - hat"j"(1 - 15) + hat"k"(- 8 + 10)`
= `22hat"i" + 14hat"j" + 2hat"k"`
APPEARS IN
संबंधित प्रश्न
Prove that `[bar"a" bar"b" + bar"c" bar"a" + bar"b" + bar"c"] = 0`
If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a" bar"b" bar"c"] = 0`.
If `bar "a" = hat"i" + 2hat"j" + 3hat"k" , bar"b" = 3hat"i" + 2hat"j"` and `bar"c" = 2hat"i" + hat"j" + 3hat"k"`, then verify that `bar"a" xx (bar"b" xx bar"c") = (bar"a".bar"c")bar"b" - (bar"a".bar"b")bar"c"`
For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`
Prove that `[vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"]` = 0
If `vec"a" = hat"i" + 2hat"j" + 3hat"k", vec"b" = 2hat"i" - hat"j" + hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"` and `vec"a" xx (vec"b" xx vec"c") = lvec"a" + "m"vec"b" + ""vec"c"`, find the values of l, m, n
If `bar"a" = 3hat"i" - 2hat"j" + 7hat"k", bar"b" = 5hat"i" + hat"j" - 2hat"k"` and `bar "c" = hat"i" + hat"j" - hat"k"`, then `[bar"a" bar"b" bar"c"]` = ______.
If `bar"c" = 3bar"a" - 2bar"b"`, then `[bar"a" bar"b" bar"c"]` is equal to ______.
Let `veca = hati + hatj + hatk` and `vecb = hatj - hatk`. If `vecc` is a vector such that `veca.vecc = vecb` and `veca.vecc` = 3, then `veca.(vecb.vecc)` is equal to ______.
If `veca = hati + 2hatj + 3hatk, vecb = 2hati + 3hatj + hatk, vecc = 3hati + hatj + 2hatk` and `αveca + βvecb + γvecc = -3(hati - hatk)`, then the ordered triplet (α, β, γ) is ______.
If `bar c = 3bara - 2barb` and `[bara barb + barc bara + barb + barc] = 0` then prove that `[bara barb barc] = 0`
Show that the volume of the parallelopiped whose coterminus edges are `bara barb barc` is `[(bara, barb, barc)].`
If `barc = 3bara - 2barb and [bara barb+barc bara+barb+barc] = 0` then prove that `[bara barb barc] = 0`
If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a" bar"b" +bar"c" bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a" bar"b" bar"c"]` = 0
If `barc = 3bara - 2barb and [bara barb+barc bara + barb + barc] = 0` then prove that `[bara barb barc] = 0`
If `barc=3bara-2barb` and `[bara barb+barc bara+barb+barc ]=0` then prove that `[bara barb barc]=0`
If `barc = 3bara - 2barb`, then prove that `[bara barb barc]` = 0.
If, `barc = 3bara - 2barb`, then prove that `[bara barb barc] = 0`