मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that abcababcabc(a¯+2b¯-c¯).[(a¯-b¯)×(a¯-b¯-c¯)]=3[a¯ b¯ c¯]. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that `(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a"  bar"b"  bar"c"]`.

बेरीज

उत्तर

`(bar"a" + 2bar"b" - bar"c"). [(bar"a" - bar"b") xx (bar"a" - bar"b" - bar"c")] = 3 [bar"a"  bar"b"  bar"c"]`

`= (bar"a" + 2bar"b" - bar"c").(bar"a"xxbar"a" - bar"a" xx bar"b" - bar"a" xx bar"c" - bar"b" xx bar"a" + bar"b" xx bar"b" + bar"b" xx bar"c")`

`= (bar"a" + 2bar"b" - bar"c").(bar"0" - bar"a" xx bar"b" - bar"a" xx bar"c" + bar"a" xx bar"b" + bar"0" + bar"b" xx bar"c")`

`= (bar"a" + 2bar"b" - bar"c"). (bar"c" xx bar"a" + bar"b" xx bar"c")`

`= bar"a".(bar"c" xx bar"a") + bar"a".(bar"b"xxbar"c") + 2bar"b".(bar"c" xx bar"a") + 2bar"b".(bar"b"xxbar"c") - bar"c".(bar"c" xx bar"a") - bar"c".(bar"b" xx bar"c")`

`= 0 + bar"a".(bar"b" xx bar"c") + 2bar"b".(bar"c" xx bar"a") + 2 xx 0 - 0 - 0`

`= [bar"a"  bar"b"  bar"c"] + 2[bar"b"  bar"c"  bar"a"]`

`= [bar"a"  bar"b"  bar"c"] + 2[bar"a"  bar"b"  bar"c"]`

= `3[bar"a"  bar"b"  bar"c"]`

shaalaa.com

Notes

The question in the textbook has a printing mistake, it should be `3 [bar"a"  bar"b"  bar"c"]` not 3 `[bar"a" - bar"b" - bar"c"]`.

Vector Triple Product
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Vectors - Exercise 5.5 [पृष्ठ १८४]

संबंधित प्रश्‍न

Prove that `[bar"a"  bar"b" + bar"c"  bar"a" + bar"b" + bar"c"] = 0`


If `bar"c" = 3bar"a" - 2bar"b"`, then prove that `[bar"a"  bar"b"  bar"c"] = 0`.


If `bar "a" = hat"i" + 2hat"j" + 3hat"k" , bar"b" = 3hat"i" + 2hat"j"` and `bar"c" = 2hat"i" + hat"j" + 3hat"k"`, then verify that `bar"a" xx (bar"b" xx bar"c") = (bar"a".bar"c")bar"b" - (bar"a".bar"b")bar"c"`


Show that `bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b") = bar"0"`


If `bara = hati - 2hatj`, `barb = hati + 2hatj, barc = 2hati + hatj - 2hatk`, then find (i) `bara xx (barb xx barc)` (ii) `(bara xx barb) xx barc`. Are the results same? Justify.


Show that the points A(2, –1, 0) B(–3, 0, 4), C(–1, –1, 4) and D(0, – 5, 2) are non coplanar


If `vec"a" = hat"i"  - 2hat"j" + 3hat"k", vec"b" = 2hat"i" + hat"j" - 2hat"k", vec"c" = 3hat"i" + 2hat"j" + hat"k"`, find `(vec"a" xx vec"b") xx vec"c"`


For any vector `vec"a"`, prove that `hat"i" xx (vec"a" xx hat"i") + hat"j" xx (vec"a" xx hat"j") + hat"k" xx (vec"a" xx hat"k") = 2vec"a"`


Prove that `[vec"a" - vec"b", vec"b" - vec"c", vec"c" - vec"a"]` = 0


If `hat"a", hat"b", hat"c"` are three unit vectors such that `hat"b"` and `hat"c"` are non-parallel and `hat"a" xx (hat"b" xx hat"c") = 1/2 hat"b"`, find the angle between `hat"a"` and `hat"c"`


`bar"a" xx (bar"b" xx bar"c") + bar"b" xx (bar"c" xx bar"a") + bar"c" xx (bar"a" xx bar"b")` = ?


Let A(4, 7, 8), B(2, 3, 4) and C(2, 5, 7) be the vertices of a triangle ABC. The length of the internal bisector of angle A is ______ 


If `bar"a" = 3hat"i" - 2hat"j" + 7hat"k", bar"b" = 5hat"i" + hat"j" - 2hat"k"` and `bar "c" = hat"i" + hat"j" - hat"k"`, then `[bar"a"  bar"b"  bar"c"]` = ______.


`"If"  barc=3bara-2barb   "and" [bara    barb+barc     bara+barb+barc]= 0  "then prove that" [bara  barb  barc]=0  `


If `bar c = 3bara - 2barb` and `[bara   barb + barc   bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If `overlinec = 3overlinea - 2overlineb` and `[overlinea         overlineb + overlinec         overlinea + overlineb + overlinec]` = 0 then prove that `[overlinea  overlineb  overlinec]` = 0


If `bar"c" = 3bar"a"-2bar"b"` and `[bar"a"     bar"b" +bar"c"      bar"a" +bar"b" +bar"c"]` = 0 then prove that `[bar"a"  bar"b"  bar"c"]` = 0


If `barc = 3bara - 2barb and [bara   barb + barc   bara + barb + barc] = 0` then prove that `[bara  barb  barc]=0`


If `barc = 3bara - 2barb and [bara       barb+barc        bara + barb + barc] = 0` then prove that `[bara  barb  barc] = 0`


If `barc=3bara-2barb` and `[bara       barb+barc       bara+barb+barc ]=0` then prove that `[bara  barb  barc]=0` 


If, `barc = 3bara -2barb, "then prove that" [bara  barb  barc] = 0` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×