हिंदी

If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and 6. With these values of a and 6, factorise the given expression. - Mathematics

Advertisements
Advertisements

प्रश्न

If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.

योग

उत्तर

Let,
p(x) = ax3 + 3x2 + bx − 3
g(x) = 2x + 3 = 0 ⇒ x = `−3/2​`
f(x) = x + 2 = 0 ⇒ x = − 2
 
Given, g(x) is a factor of f(x)
∴ By factor theorem,
 
`p(−3/2​) = 0`
 
⇒ `a(−3/2​)^3 + 3(−3/2)^2+b(−3/2​)−3=0`
 
⇒ `a(−27/8​)+3(9/4​)+b(−3/2)−3=0`
 
⇒ `−(27a)/8 ​+ 27/4 ​− (3b)/2 − 3 = 0`
 
⇒ `−(27a + 54 - 12b)/8 = 3`
 
⇒ −27a + 54 − 12b = 24
 
⇒ − 3(9a + 4b) = 24 − 54 = −30
 
⇒ 9a + 4b = 10             ...(i)
 
Also, p(x) when divided by f(x) leaves a remainder −3
∴ By remainder theorem,
p(−2) = −3
⇒ a(−2)3 + 3(−2)2 + b(−2) − 3 = −3
⇒ −8a + 12 − 2b = 0
⇒ 8a + 2b = 12
⇒ 4a + b = 6            ...(ii)
 
Solving (i) and  (ii), we get
a = 2 and  b = −2
 
Hence, p(x) = 2x3 + 3x2 − 2x − 3
= x2(2x + 3) − (2x + 3)
= (2x + 3)(x2 − 1)
= (2x + 3)(x + 1)(x − 1)
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Factorization - Exercise 6.1

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×