Advertisements
Advertisements
प्रश्न
Show that 3x + 2 is a factor of 3x2 – x – 2.
उत्तर
(x – a) is a factor of a polynomial f(x) if the remainder, when f(x) is divided by (x – a), is 0, i.e., if f(a) = 0.
f(x) = 3x2 – x – 2
`f((-2)/3) = 3((-2)/3)^2 - ((-2)/3) - 2`
= `3 xx 4/9 + 2/3 - 2`
= `4/3 + 2/3 - 2`
= `6/3 - 2`
= 2 – 2
= 0
Hence, 3x + 2 is a factor of 3x2 – x – 2
APPEARS IN
संबंधित प्रश्न
Show that x – 2 is a factor of 5x2 + 15x – 50.
Find the value of a, if x – 2 is a factor of 2x5 – 6x4 – 2ax3 + 6ax2 + 4ax + 8.
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1)x2 + nx – 18.
Using the Factor Theorem, show that (x – 2) is a factor of x3 – 2x2 – 9x + 18. Hence, factorise the expression x3 – 2x2 – 9x + 18 completely.
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
Prove by factor theorem that
(3x-2) is a factor of 18x3 - 3x2 + 6x -12
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = 2x3 + 4x + 6 and g(x) = x + 1
Using factor theorem, show that (x – 5) is a factor of the polynomial
2x3 – 5x2 – 28x + 15
Check if (x + 2) and (x – 4) are the sides of a rectangle whose area is x2 – 2x – 8 by using factor theorem
Find the value of 'a' if x – a is a factor of the polynomial 3x3 + x2 – ax – 81.