Advertisements
Advertisements
प्रश्न
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = 2x3 + 4x + 6 and g(x) = x + 1
उत्तर
p(x) = 2x3 + 4x + 6 and g(x) = x + 1
Now put x = -1 in equation (i), we get
p(-1) = 2(-1)3 + 4(-1) + 6
= 2 x - 1 - 4 + 6
= -2 - 4 + 6
= -6 + 6 = 0
Since, p(-1) = 0, so by factor theorem (x = 1) is a factor of p(x).
APPEARS IN
संबंधित प्रश्न
Find the value of k, if 2x + 1 is a factor of (3k + 2)x3 + (k − 1)
Use factor theorem to determine whether x + 3 is factor of x 2 + 2x − 3 or not.
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = x3 − x2 − x − 1, q(x) = x − 1
Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.
Show that (x – 3) is a factor of x3 – 7x2 + 15x – 9. Hence factorise x3 – 7x2 + 15 x – 9
Show that (2x + 1) is a factor of 4x3 + 12x2 + 11 x + 3 .Hence factorise 4x3 + 12x2 + 11x + 3.
Determine the value of m, if (x + 3) is a factor of x3 – 3x2 – mx + 24
Check if (x + 2) and (x – 4) are the sides of a rectangle whose area is x2 – 2x – 8 by using factor theorem
If p(a) = 0 then (x – a) is a ___________ of p(x)
Which of the following is a factor of (x – 2)2 – (x2 – 4)?