Advertisements
Advertisements
प्रश्न
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = 2x3 + 4x + 6 and g(x) = x + 1
उत्तर
p(x) = 2x3 + 4x + 6 and g(x) = x + 1
Now put x = -1 in equation (i), we get
p(-1) = 2(-1)3 + 4(-1) + 6
= 2 x - 1 - 4 + 6
= -2 - 4 + 6
= -6 + 6 = 0
Since, p(-1) = 0, so by factor theorem (x = 1) is a factor of p(x).
APPEARS IN
संबंधित प्रश्न
Using the Factor Theorem, show that (x + 5) is a factor of 2x3 + 5x2 – 28x – 15. Hence, factorise the expression 2x3 + 5x2 – 28x – 15 completely.
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = 2x3 − x2 − 45, q(x) = x − 3
Prove by factor theorem that
(2x+1) is a factor of 4x3 + 12x2 + 7x +1
Prove by factor theorem that
(x - 3) is a factor of 5x2 - 21 x +18
Prove that ( p-q) is a factor of (q - r)3 + (r - p) 3
Show that (x – 3) is a factor of x3 – 7x2 + 15x – 9. Hence factorise x3 – 7x2 + 15 x – 9
Show that 2x + 7 is a factor of 2x3 + 5x2 – 11x – 14. Hence factorise the given expression completely, using the factor theorem.
Find the value of ‘K’ for which x = 3 is a solution of the quadratic equation, (K + 2)x2 – Kx + 6 = 0. Also, find the other root of the equation.
Find the value of 'a' if x – a is a factor of the polynomial 3x3 + x2 – ax – 81.
If mx2 – nx + 8 has x – 2 as a factor, then ______.