Advertisements
Advertisements
प्रश्न
Prove by factor theorem that
(x - 3) is a factor of 5x2 - 21 x +18
उत्तर
x - 3 = 0 ⇒ x = 3
Substituting this value , we get
f(3) = 5(3)2 - 21(3) + 18
= 45 - 63 + 18
= 0
APPEARS IN
संबंधित प्रश्न
Prove that ( p-q) is a factor of (q - r)3 + (r - p) 3
Prove that (x-3) is a factor of x3 - x2 - 9x +9 and hence factorize it completely.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 + x2 + 3x + 175 and g(x) = x + 5.
Find the value of the constant a and b, if (x – 2) and (x + 3) are both factors of expression x3 + ax2 + bx - 12.
Show that (x – 1) is a factor of x3 – 5x2 – x + 5 Hence factorise x3 – 5x2 – x + 5.
Show that 2x + 7 is a factor of 2x3 + 5x2 – 11x – 14. Hence factorise the given expression completely, using the factor theorem.
If (x + 2) and (x – 3) are factors of x3 + ax + b, find the values of a and b. With these values of a and b, factorise the given expression.
If (x – 1) divides the polynomial kx3 – 2x2 + 25x – 26 without remainder, then find the value of k
Find the value of 'a' if x – a is a factor of the polynomial 3x3 + x2 – ax – 81.
x – 1 is a factor of 8x2 – 7x + m; the value of m is ______.