Advertisements
Advertisements
प्रश्न
Prove that (x-3) is a factor of x3 - x2 - 9x +9 and hence factorize it completely.
उत्तर
If x - 3 assumed to be factor, then x = 3. Substituting this in problem polynomial, we get:
f(3) = 3 × 3 × 3 - 3 × 3 - 9 × 3 + 9 = 0
Hence its proved that x - 3 is a factor of the polynomial.
APPEARS IN
संबंधित प्रश्न
Show that 3x + 2 is a factor of 3x2 – x – 2.
Using the Factor Theorem, show that (x – 2) is a factor of x3 – 2x2 – 9x + 18. Hence, factorise the expression x3 – 2x2 – 9x + 18 completely.
Find the value of ‘a’, if (x – a) is a factor of x3 – ax2 + x + 2.
Prove by factor theorem that
(2x+1) is a factor of 4x3 + 12x2 + 7x +1
Prove that (x - y) is a factor of yz( y2 - z2) + zx( z2 - x2) + xy ( x2 - y2)
The expression 2x3 + ax2 + bx - 2 leaves the remainder 7 and 0 when divided by (2x - 3) and (x + 2) respectively calculate the value of a and b. With these value of a and b factorise the expression completely.
If x – 2 is a factor of 2x3 - x2 - px - 2.
Find the value of p
Show that (x – 3) is a factor of x3 – 7x2 + 15x – 9. Hence factorise x3 – 7x2 + 15 x – 9
If (x + 2) and (x – 3) are factors of x3 + ax + b, find the values of a and b. With these values of a and b, factorise the given expression.
If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.