Advertisements
Advertisements
प्रश्न
Using the Factor Theorem, show that (x – 2) is a factor of x3 – 2x2 – 9x + 18. Hence, factorise the expression x3 – 2x2 – 9x + 18 completely.
उत्तर
Let f(x)= x3 – 2x2 – 9x + 18
x – 2 = 0 `\implies` x = 2
∴ Remainder = f(2)
= (2)3 – 2(2)2 – 9(2) + 18
= 8 – 8 – 18 +18
= 0
Hence, (x – 2) is a factor of f(x).
Now, we have:
x2 – 9
`x - 2")"overline(x^3 - 2x^2 - 9x + 18)`
x3 – 2x2
– +
– 9x + 18
– 9x + 18
+ –
0
∴ x3 – 2x2 – 9x + 18 = (x – 2)(x2 – 9)
= (x – 2)(x + 3)(x – 3)
APPEARS IN
संबंधित प्रश्न
If (x – 2) is a factor of the expression 2x3 + ax2 + bx – 14 and when the expression is divided by (x – 3), it leaves a remainder 52, find the values of a and b.
What should be subtracted from 3x3 – 8x2 + 4x – 3, so that the resulting expression has x + 2 as a factor?
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = 2x3 − x2 − 45, q(x) = x − 3
Prove by factor theorem that
(x-2) is a factor of 2x3- 7x -2
Prove by factor theorem that
(2x+1) is a factor of 4x3 + 12x2 + 7x +1
Find the value of m ·when x3 + 3x2 -m x +4 is exactly divisible by (x-2)
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 + x2 + 3x + 175 and g(x) = x + 5.
Show that 2x + 7 is a factor of 2x3 + 5x2 - 11 x - 14. Hence factorise the given expression completely, using the factor theorem.
Using the Remainder and Factor Theorem, factorise the following polynomial: x3 + 10x2 – 37x + 26.
Factors of 3x3 – 2x2 – 8x are ______.