Advertisements
Advertisements
प्रश्न
Prove by factor theorem that
(x-2) is a factor of 2x3- 7x -2
उत्तर
(x-2) is a factor of 2x3- 7x -2
x - 2 = 0 ⇒ x = 2
Substituting this value, we get
f{2) = 2 x 2 x 2 x 2 - 7 x 2 - 2 = 0
Hence (x - 2 ) is a factor of 2 × 3- 7x - 2
APPEARS IN
संबंधित प्रश्न
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1)x2 + nx – 18.
Using the Factor Theorem, show that (x – 2) is a factor of x3 – 2x2 – 9x + 18. Hence, factorise the expression x3 – 2x2 – 9x + 18 completely.
If x – 2 is a factor of x2 + ax + b and a + b = 1, find the values of a and b.
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = 2x3 − x2 − 45, q(x) = x − 3
If x – 2 is a factor of 2x3 - x2 - px - 2.
with the value of p, factorize the above expression completely.
Show that (x – 2) is a factor of 3x2 – x – 10 Hence factorise 3x2 – x – 10.
Show that (2x + 1) is a factor of 4x3 + 12x2 + 11 x + 3 .Hence factorise 4x3 + 12x2 + 11x + 3.
If (x + 2) and (x – 3) are factors of x3 + ax + b, find the values of a and b. With these values of a and b, factorise the given expression.
Which of the following is a factor of (x – 2)2 – (x2 – 4)?
Is (x – 2) a factor of x3 – 4x2 – 11x + 30?