Advertisements
Advertisements
Question
Prove by factor theorem that
(x-2) is a factor of 2x3- 7x -2
Solution
(x-2) is a factor of 2x3- 7x -2
x - 2 = 0 ⇒ x = 2
Substituting this value, we get
f{2) = 2 x 2 x 2 x 2 - 7 x 2 - 2 = 0
Hence (x - 2 ) is a factor of 2 × 3- 7x - 2
APPEARS IN
RELATED QUESTIONS
If (x + 2) and (x + 3) are factors of x3 + ax + b, find the values of 'a' and `b'.
Find the values of constants a and b when x – 2 and x + 3 both are the factors of expression x3 + ax2 + bx – 12.
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1)x2 + nx – 18.
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = x3 − x2 − x − 1, q(x) = x − 1
Prove that (x - y) is a factor of yz( y2 - z2) + zx( z2 - x2) + xy ( x2 - y2)
Find the value of a , if (x - a) is a factor of x3 - a2x + x + 2.
If x – 2 is a factor of 2x3 - x2 - px - 2.
Find the value of p
Using factor theorem, show that (x - 3) is a factor of x3 - 7x2 + 15x - 9, Hence, factorise the given expression completely.
What number should be subtracted from 2x3 – 5x2 + 5x so that the resulting polynomial has 2x – 3 as a factor?