English

Find the values of constants a and b when x – 2 and x + 3 both are the factors of expression x3 + ax2 + bx – 12. - Mathematics

Advertisements
Advertisements

Question

Find the values of constants a and b when x – 2 and x + 3 both are the factors of expression x3 + ax2 + bx – 12.

Sum

Solution

Let f(x) = x3 + ax2 + bx – 12

x – 2 = 0

`\implies` x = 2 

x – 2 is a factor of f(x).

So, remainder = 0 

∴ (2)3 + a(2)2 + b(2) – 12 = 0 

`\implies` 8 + 4a + 2b – 12 = 0 

`\implies` 4a + 2b – 4 = 0 

`\implies` 2a + b – 2 = 0  ...(1) 

x + 3 = 0

`\implies` x = –3     

x + 3 is a factor of f(x).

So, remainder = 0 

∴ (–3)3 + a(–3)2 + b(–3) – 12 = 0 

`\implies` –27 + 9a – 3b – 12 = 0 

`\implies` 9a – 3b – 39 = 0 

`\implies` 3a – b – 13 = 0   ...(2)

Adding (1) and (2), we get, 

5a – 15 = 0 

`\implies` a = 3 

Putting the value of a in (1), we get,

 6 + b – 2 = 0 

`\implies` b = – 4

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (A) [Page 108]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (A) | Q 5 | Page 108

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×