English

Show that (2x + 1) is a factor of 4x3 + 12x2 + 11 x + 3 .Hence factorise 4x3 + 12x2 + 11x + 3. - Mathematics

Advertisements
Advertisements

Question

Show that (2x + 1) is a factor of 4x3 + 12x2 + 11 x + 3 .Hence factorise 4x3 + 12x2 + 11x + 3.

Sum

Solution

Let 2x + 1 = 0,
then x = 
Substituting the value of x in f(x),
f(x) = 4x3 + 12x2 + 11x + 3

`f (-1/2) = 4(-1/2)^3 + 12(-1/2)^2 + 11(-1/2) + 3`

= `4(-1/8) + 12(1/4) + 11(-1/2) + 3`

= `4(1)/(2) + 3 - (11)/(2) + 3`
= (6) – (6)
= 0
∵ Remainder = 0
∴ 2x + 1 is a factor of
4x3 + 12x2 + 11x + 3
Now dividing f(x) by 2x + 1, we get

`2x + 1")"overline(4x^3 + 12x^2 + 11x + 3)("2x^2 + 5x + 3`
           4x3 +  2x2              
            –    –                    
                  10x2  + 11x
                  10x2  + 5x
                   –       –           
                           6x + 3
                           6x + 3
                            –   –       
                                x        
∴ 4x3 + 12x2 + 11x + 3
= (2x + 1)(2x2 + 5x + 3)
= (2x + 1)[2x2 + 2x + 3x + 3]
= (2x + 1)[2x(x + 1) + 3(x + 1]
= (2x + 1)[(x + 1)(2x + 3)]
= (2x + 1)(x + 1)(2x + 3).

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Factorization - Exercise 6.1

APPEARS IN

ML Aggarwal Understanding ICSE Mathematics [English] Class 10
Chapter 6 Factorization
Exercise 6.1 | Q 13

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×