Advertisements
Advertisements
प्रश्न
Show that (2x + 1) is a factor of 4x3 + 12x2 + 11 x + 3 .Hence factorise 4x3 + 12x2 + 11x + 3.
उत्तर
Let 2x + 1 = 0,
then x =
Substituting the value of x in f(x),
f(x) = 4x3 + 12x2 + 11x + 3
`f (-1/2) = 4(-1/2)^3 + 12(-1/2)^2 + 11(-1/2) + 3`
= `4(-1/8) + 12(1/4) + 11(-1/2) + 3`
= `4(1)/(2) + 3 - (11)/(2) + 3`
= (6) – (6)
= 0
∵ Remainder = 0
∴ 2x + 1 is a factor of
4x3 + 12x2 + 11x + 3
Now dividing f(x) by 2x + 1, we get
`2x + 1")"overline(4x^3 + 12x^2 + 11x + 3)("2x^2 + 5x + 3`
4x3 + 2x2
– –
10x2 + 11x
10x2 + 5x
– –
6x + 3
6x + 3
– –
x
∴ 4x3 + 12x2 + 11x + 3
= (2x + 1)(2x2 + 5x + 3)
= (2x + 1)[2x2 + 2x + 3x + 3]
= (2x + 1)[2x(x + 1) + 3(x + 1]
= (2x + 1)[(x + 1)(2x + 3)]
= (2x + 1)(x + 1)(2x + 3).
APPEARS IN
संबंधित प्रश्न
Find the value of k, if 3x – 4 is a factor of expression 3x2 + 2x − k.
Using the factor Theorem, show that:
2x + 7 is a factor 2x3 + 5x2 − 11x – 14. Hence, factorise the given expression completely.
Prove that ( p-q) is a factor of (q - r)3 + (r - p) 3
Prove that (x-3) is a factor of x3 - x2 - 9x +9 and hence factorize it completely.
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 - 3x2 + 4x - 4 and g(x) = x - 2
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = 2x3 + 4x + 6 and g(x) = x + 1
Using the Remainder and Factor Theorem, factorise the following polynomial: x3 + 10x2 – 37x + 26.
If (x – 1) divides the polynomial kx3 – 2x2 + 25x – 26 without remainder, then find the value of k
If p(a) = 0 then (x – a) is a ___________ of p(x)
If x – 2 is a factor of x3 – kx – 12, then the value of k is ______.