Advertisements
Advertisements
Question
Show that (x – 3) is a factor of x3 – 7x2 + 15x – 9. Hence factorise x3 – 7x2 + 15 x – 9
Solution
Let x – 3 = 0, then x = 3,
Substituting the value of x in f(x),
f(x = x3 - 7x2 + 15x – 9
= (3)3 – 7(3)2 + 15(3) – 9
= 27 – 63 + 45 – 9
= 72 – 72
= 0
∵ Remainder = 0
∴ x – 3 is a factor of x3 – 7x2 + 15x – 9
Now dividing it by x – 3, we get
`x - 3")"overline(x^3 - 7x^2 + 15x – 9)("x^2 - 4x + 3`
x3 – 3x2
– +
– 4x2 – 15x
– 4x2 + 12x
+ –
3x – 9
3x – 9
– +
x _
∴ x3 – 7x2 + 15x – 9
= (x – 3)(x2 – 4x + 3)
= (x – 3)[x2 – x – 3x + 3]
= (x – 3)[x(x – 1) – 3(x – 1)]
= (x – 3)(x – 1)(x – 3)
= (x – 3)2 (x – 1).
APPEARS IN
RELATED QUESTIONS
If (x + 2) and (x + 3) are factors of x3 + ax + b, find the values of 'a' and `b'.
Using the Factor Theorem, show that (x + 5) is a factor of 2x3 + 5x2 – 28x – 15. Hence, factorise the expression 2x3 + 5x2 – 28x – 15 completely.
Find the value of ‘a’, if (x – a) is a factor of x3 – ax2 + x + 2.
Find the value of k, if 2x + 1 is a factor of (3k + 2)x3 + (k − 1)
If (x - 2) is a factor of x3 − mx2 + 10x − 20 then find the value of m.
Prove by factor theorem that
(2x - 1) is a factor of 6x3 - x2 - 5x +2
Prove that ( p-q) is a factor of (q - r)3 + (r - p) 3
By factor theorem, show that (x + 3) and (2x – 1) are factors of 2x2 + 5x – 3.
If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.
Which of the following is a factor of (x – 2)2 – (x2 – 4)?