English

Using the Factor Theorem, show that (x + 5) is a factor of 2x3 + 5x2 – 28x – 15. Hence, factorise the expression 2x3 + 5x2 – 28x – 15 completely. - Mathematics

Advertisements
Advertisements

Question

Using the Factor Theorem, show that (x + 5) is a factor of 2x3 + 5x2 – 28x – 15. Hence, factorise the expression 2x3 + 5x2 – 28x – 15 completely.  

Sum

Solution

Let f(x) = 2x3 + 5x2 – 28x – 15 

x + 5 = 0 `\implies` x = –5  

∴ Remainder = f(–5)  

= 2(–5)3 + 5(–5)2 – 28(–5) – 15  

= –250 + 125 + 140 – 15 

= –265 + 265 

= 0 

Hence, (x + 5) is a factor of f(x).

Now, we have, 

              2x2 – 5x – 3
`x + 5")"overline(2x^3 + 5x^2 - 28x - 15)`
           2x3 + 10x2                        
            –    –                                        
                  – 5x2 – 28x
                  – 5x2 – 25x                       
                  +      +                      
                           – 3x – 15
                           – 3x – 15              
                           +     +           
                                  0            

∴ 2x3 + 5x2 – 28x – 15 = (x + 5)(2x2 – 5x – 3) 

= (x + 5)[2x2 – 6x + x – 3] 

= (x + 5)[2x(x – 3) + 1(x – 3)] 

= (x + 5)(2x + 1)(x – 3)

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Remainder and Factor Theorems - Exercise 8 (B) [Page 111]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 8 Remainder and Factor Theorems
Exercise 8 (B) | Q 1.2 | Page 111

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×