Advertisements
Advertisements
Question
If x – 2 is a factor of x2 + ax + b and a + b = 1, find the values of a and b.
Solution
Let f(x) = x2 + ax + b
Since, (x – 2) is a factor of f(x).
∴ Remainder = f(2) = 0
(2)2 + a(2) + b = 0
4 + 2a + b = 0
2a + b = – 4 ...(i)
It is given that:
a + b = 1 ...(ii)
Subtracting (ii) from (i), we get,
a = –5
Substituting the value of a in (ii), we get,
b = 1 – (–5) = 6
APPEARS IN
RELATED QUESTIONS
Show that x – 2 is a factor of 5x2 + 15x – 50.
Find the value of k, if 3x – 4 is a factor of expression 3x2 + 2x − k.
Find the values of constants a and b when x – 2 and x + 3 both are the factors of expression x3 + ax2 + bx – 12.
What should be subtracted from 3x3 – 8x2 + 4x – 3, so that the resulting expression has x + 2 as a factor?
If (x - 2) is a factor of x3 − mx2 + 10x − 20 then find the value of m.
Show that m − 1 is a factor of m21 − 1 and m22 − 1.
Prove by factor theorem that
(x-2) is a factor of 2x3- 7x -2
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = x3 + x2 + 3x + 175 and g(x) = x + 5.
If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.
If x – 3 is a factor of p(x), then the remainder is