English
Maharashtra State BoardSSC (English Medium) 9th Standard

If (x - 2) is a factor of x3 − mx2 + 10x − 20 then find the value of m. - Algebra

Advertisements
Advertisements

Question

If (x - 2) is a factor of x3 − mx2 + 10x − 20 then find the value of m.

Sum

Solution

Let p(x) = x3 − mx2 + 10x − 20

(x − 2) is a factor of p(x) = x3 − mx2 + 10x − 20

By factor theorem,

remainder = 0

∴ p(2) = 0 

⇒ (2)3 − m × (2)2 + 10 × (2) − 20 = 0 

⇒ 8 − 4m + 20 − 20 = 0

⇒ 8 − 4m = 0

⇒ 4m = 8

⇒ m = 2

Thus, the value of m is 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Polynomials - Practice Set 3.5 [Page 53]

APPEARS IN

Balbharati Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
Chapter 3 Polynomials
Practice Set 3.5 | Q (8) | Page 53
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×