Advertisements
Advertisements
प्रश्न
If (x - 2) is a factor of x3 − mx2 + 10x − 20 then find the value of m.
उत्तर
Let p(x) = x3 − mx2 + 10x − 20
(x − 2) is a factor of p(x) = x3 − mx2 + 10x − 20
By factor theorem,
remainder = 0
∴ p(2) = 0
⇒ (2)3 − m × (2)2 + 10 × (2) − 20 = 0
⇒ 8 − 4m + 20 − 20 = 0
⇒ 8 − 4m = 0
⇒ 4m = 8
⇒ m = 2
Thus, the value of m is 2.
APPEARS IN
संबंधित प्रश्न
Find the values of m and n so that x – 1 and x + 2 both are factors of x3 + (3m + 1)x2 + nx – 18.
Use factor theorem to determine whether x + 3 is factor of x 2 + 2x − 3 or not.
By using factor theorem in the following example, determine whether q(x) is a factor p(x) or not.
p(x) = x3 − x2 − x − 1, q(x) = x − 1
Prove by factor theorem that
(2x+1) is a factor of 4x3 + 12x2 + 7x +1
In the following problems use the factor theorem to find if g(x) is a factor of p(x):
p(x) = 2x3 + 4x + 6 and g(x) = x + 1
If x – 2 is a factor of 2x3 - x2 - px - 2.
Find the value of p
Show that (x – 2) is a factor of 3x2 – x – 10 Hence factorise 3x2 – x – 10.
Find the value of ‘K’ for which x = 3 is a solution of the quadratic equation, (K + 2)x2 – Kx + 6 = 0. Also, find the other root of the equation.
If ax3 + 3x2 + bx – 3 has a factor (2x + 3) and leaves remainder – 3 when divided by (x + 2), find the values of a and b. With these values of a and b, factorise the given expression.
If (x – 1) divides the polynomial kx3 – 2x2 + 25x – 26 without remainder, then find the value of k