Advertisements
Advertisements
Question
Use factor theorem to determine whether x + 3 is factor of x 2 + 2x − 3 or not.
Solution
Let p(x) = x2 + 2x − 3.
Divisor = x + 3
∴ Let x = −3
∴ p(−3) = (−3)2 + 2 × (−3) − 3
= 9 − 6 − 3
= 0
So, by factor theorem, (x + 3) is a factor of x2 + 2x − 3.
APPEARS IN
RELATED QUESTIONS
(3x + 5) is a factor of the polynomial (a – 1)x3 + (a + 1)x2 – (2a + 1)x – 15. Find the value of ‘a’, factorise the given polynomial completely.
Prove that (x+ 1) is a factor of x3 - 6x2 + 5x + 12 and hence factorize it completely.
Prove that (5x - 4) is a factor of the polynomial f(x) = 5x3 - 4x2 - 5x +4. Hence factorize It completely.
Show that (x - 1) is a factor of x3 - 7x2 + 14x - 8. Hence, completely factorise the above expression.
Given that x + 2 and x + 3 are factors of 2x3 + ax2 + 7x - b. Determine the values of a and b.
If x – 2 is a factor of 2x3 - x2 - px - 2.
Find the value of p
What number should be subtracted from 2x3 – 5x2 + 5x so that the resulting polynomial has 2x – 3 as a factor?
If two polynomials 2x3 + ax2 + 4x – 12 and x3 + x2 – 2x + a leave the same remainder when divided by (x – 3), find the value of a and also find the remainder.
If (x – 1) divides the polynomial kx3 – 2x2 + 25x – 26 without remainder, then find the value of k
If x – 2 is a factor of x3 – kx – 12, then the value of k is ______.